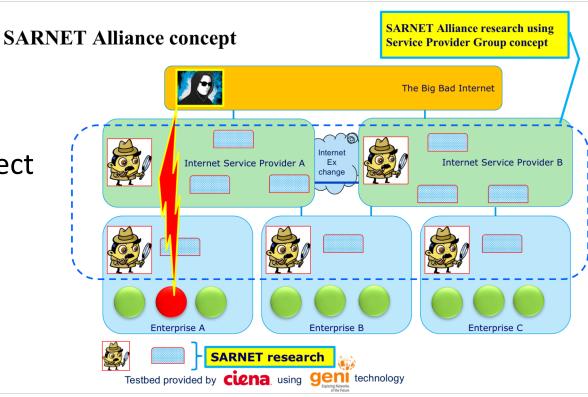
Social Computational Trust Model (SCTM): A Framework to Facilitate the Selection of Partners

Ameneh Deljoo

Systems and Networking Lab
University of Amsterdam
a.deljoo@uva.nl

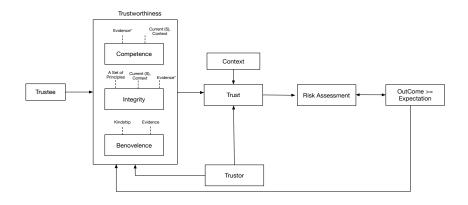


Motivation

- Network of organizations evolve over time and become more complex,
- Find a "right" partner is a challenging task

We need to:

❖ Define a more sophisticated and computationally executable method to select the "right" partner for sharing data and intelligence.



Contributions

- **❖The Social Computational Trust Model (SCTM)** represents social trust and its components, which are important for evaluating the partners.
- * Risk assessment through the SCTM model. The SCTM facilitates risk-based partner selection to select the "right" partner to collaborate in joint tasks.

Trust and its Antecedents

- \star "x" expects "y" to do task (τ) and "y" will not exploit vulnerabilities of "x" when "y" faced with the opportunity to do so. Therefore, "y":
 - Has the potential ability to perform a given task (competence),
 - ❖Adheres to a set of rules agreed upon and acts accordingly to fulfill the commitments (integrity), and
 - **Acts** and does **good** even if unexpected contingencies arise (benevolence).

Social Computational Trust Model (SCTM)

- Identify two distinctive trustworthiness factors (Benevolence and Competence)
- Evaluate Trust in a dynamic way
- Gather the direct and indirect evidence on a trustee
- Update Trust value

¹ Integrity has been considered as a part of Benevolence function.

Notation

Description	Representation	Value Range
Agent	x,y	
Society of Agents (trustor, trustee)	$x, y \in A$	
Knowledge based of trustor x	Kb_x	
Set of Situations	$S = \{s_1, s_2, s_n\}$	
Tasks	au	
Sub-tasks	$ au_{s1}, au_{sn}$	
Context	$D = \{d_1, d_2,d_8\}$	
d_8	$\{Fd, Fdd, V\}$	1, 0.5, 0
All the direct evidence on y in the situation s_i	$Ed(x, y, s_i; Kb_x)$	
All the available evidence on y from y 's neighbors in the situation s_i	$Ec(nbr_y, y, s_i)$	
Trustee's trustworthiness toward trustor x in the situation s_i	$TW(x, y; s_i)$	[0,1]
Trust x on y in the situation s_i	$Tr(x, y; s_i)$	[0,1]

Dimensions

In order to define the situations that lead to an agreement between a trustor and a trustee:

- d_1 = trustor,
- d_2 = trustee ,
- d_3 = time,
- d_4 = location,
- d_5 = task,
- d_6 =complexity,
- d_7 = deadline,
- ❖Three different outcome of tasks
 - Fd(Fullfil duty)
 - Fdd(Fullfil duty with delay)
 - *V*(*Violate*)

$$\text{val} (d_8) = \begin{cases} 1 \text{,} & \text{if } d_8 = Fd \\ 0.5 \text{,} & \text{if } d_8 = Fdd \\ 0 \text{,} & \text{if } d_8 = V \end{cases}$$

Calculate the Outcome

- ❖d₈ = Outcome
- Three different outcome of tasks

Fd(Fullfil duty)
Fdd(Fullfil duty with delay)
V(Violate)

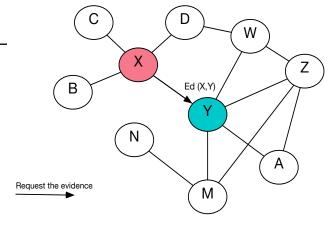
$$\text{val} (d_8) = \begin{cases} 1 \text{,} & \text{if } d_8 = Fd \\ 0.5 \text{,} & \text{if } d_8 = Fdd \\ 0 \text{,} & \text{if } d_8 = V \end{cases}$$

Criginator's Destination's Id Req_t Rep_t Task type Outcome of a task

Algorithm 1 Calculate the Outcome Based on the Task's Deadline.

Require: $Time_w$: time window. **Require:** Req_t : request time. **Require:** Rep_t : report time.

 $d_7 = Rep_t - Req_t$ if $d_7 <= Time_w$ then $d_8 = Fd$

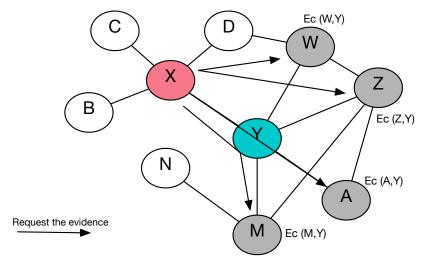

else if $d_7 > Time_w$ then $d_8 = Fdd$

else if $d_7 = 0$ then $d_8 = V$

end if

return d_8

Evidence Gathering: Direct evidence



A trustor looks at its Kb to collect the evidence on a trustee based on past interactions.

$$val_{d}(.) \to [0,1]$$

$$Ed(x, y, s_{i}; kb_{x}) = \{d_{8}(x, y, s_{i}) \in kb_{x}\}$$

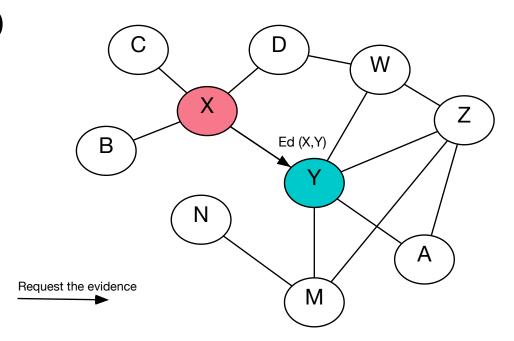
$$val_{d}(Ed(x, y, s_{i}; kb_{x})) = \frac{1}{N_{x}} \sum_{d_{8}(x, y, s_{i}) \in Ed(x, y, s_{i}; kb_{x})} val(d_{8}(x, y, s_{i}))$$

$$\operatorname{val}\left(d_{8}\right) = \begin{cases} 1 \text{,} & \text{if } d_{8} = Fd \\ 0.5 \text{,} & \text{if } d_{8} = Fdd \\ 0 \text{,} & \text{if } d_{8} = V \end{cases} \text{, } N_{\chi} = number \ of \ enrices \ in \ the \ Kb's$$

Evidence Gathering: Indirect evidence

❖A trustor asks a trustee's direct neighbors to send him their evidence on a given trustee.

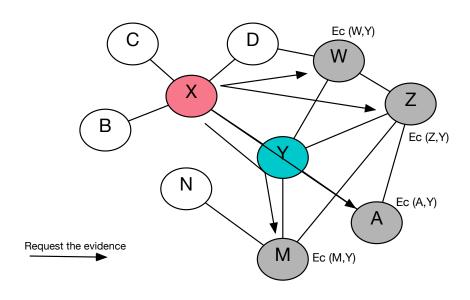
$$val_c(.) \rightarrow [0,1]$$


$$Ec(nbr_y, y,s_i) = \{ Ed(u, y,s_i;kb_u) \mid u \in nbr_y \}$$

$$val_c(Ec(x, y, s_i)) = \frac{1}{N_{nbr}} \sum_{Ed(u, y,s_i;kb_x) \in Ec(nbr_y, y, s_i)} val_d(Ed(u, y,s_i;kb_u))$$

Benevolence Function

 \clubsuit Based on the <u>direct</u> interactions between $trustor\ x\ and\ trustee\ y$ in the situation s_i .


$$Ben(x, y, s_i) = val_d(Ed(x, y, s_i, kb_x))$$

Competence Function

Evaluate based on the all available evidence on Trustee (e.g. y,z)

$$Com(nbr_y, y, s_i) = val_c(Ec(nbr'_y, y, s_i)), nbr'_y = nbr_y \setminus \{x\}$$

Estimating Trust¹ based on Competence and Benevolence functions

$$Tw(x, y, s_i) = \frac{1}{2}(Com(nbr_y, y, s_i) + Ben(x, y, s_i))$$

$$Tr(x, y, s_i) = Tw(x, y, s_i)$$

¹ Integrity has been considered as a part of Benevolence function.

Risk Estimation

Risk Estimation

Interaction Risk $(R_i(x, y, s_i))$ in the Alliance Consists of:

- *Relational Risk $(R_r(x, y, s_i))$: The **probability** and **consequence** of **not having** a successful cooperation.
- **Performance** Risk $(R_p(x, y, s_i))$: The **probability** and **consequences** that alliance **objectives** are not **realized** despite **satisfactory cooperation** among the partner.

Propositions

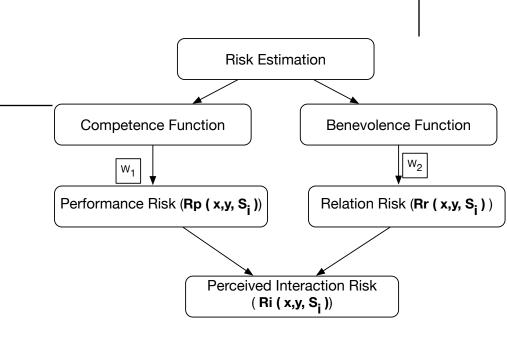
Proposition1

Benevolent¹ behavior of partners **increases trust** and **reduces** former perceived **relational risk** in the alliance.

$$R_r(x, y, s_i) \propto (1 - Ben(x, y, s_i))$$

Proposition 2

The **perceived performance risk** will be **reduced** if the competence of the given member is **high**.

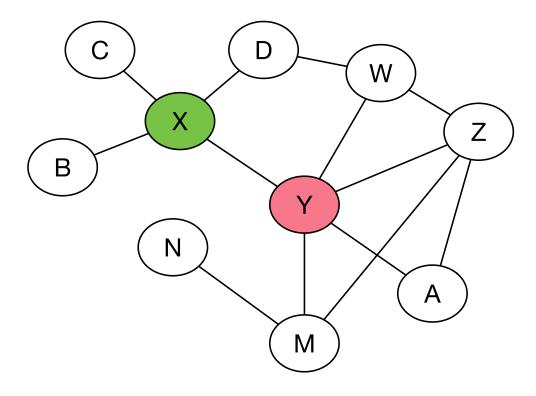

$$R_p(x, y, s_i) \propto \left(1 - Com(nbr_y, y, s_i)\right)$$

¹Some of the scholars consider faith and good intentions instead of benevolence.

Interaction risk

Interaction Risk is given by:

$$R_i(x, y, s_i) = R_r(x, y, s_i) + R_p(x, y, s_i)$$


$$R_i(x, y, s_i) = w_1(1 - Com(x, y; s_i)) + w_2(1 - Ben(x, y; s_i))$$

$$R_i(x, y, s_i) = \alpha \left(1 - Com(nbr_y, y, s_i) \right) + (1 - \alpha) \left(1 - Ben(x, y, s_i) \right), \qquad 0 \le \alpha \le 1$$

$$w_1 = \alpha$$
, $w_2 = 1 - \alpha$

T. Das, B.-S. Teng, Risk types and inter-rm alliance structures, Journal of management studies 33 (6) (1996) 827{843.

Case Study

A Collaborative Network

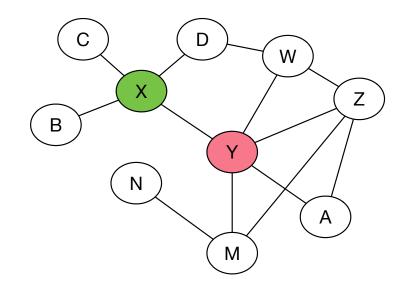
Simulation settings and their illustrations

Parameters	Values	Illustrations
\overline{A}	Fixed	Number of nodes in the network
au	Fixed	Type of task (defend and mitigate the attack)
N_x	6	Number of entries in the Kbs
$t_{request}$	Initiate the simulation	Request time
t_{report}	Receive the feedback on the request	Report time
Δt_w	10 s	Time window
α	0.3	Weight factor
S	4	number of situations
$ au_s$	4	number of sub-tasks

Scenario

Domain "N" wants to choose ideal domains for collaboration in order to mitigate and defend against a certain attack.

Task (τ): Mitigate and defend against a certain attack.

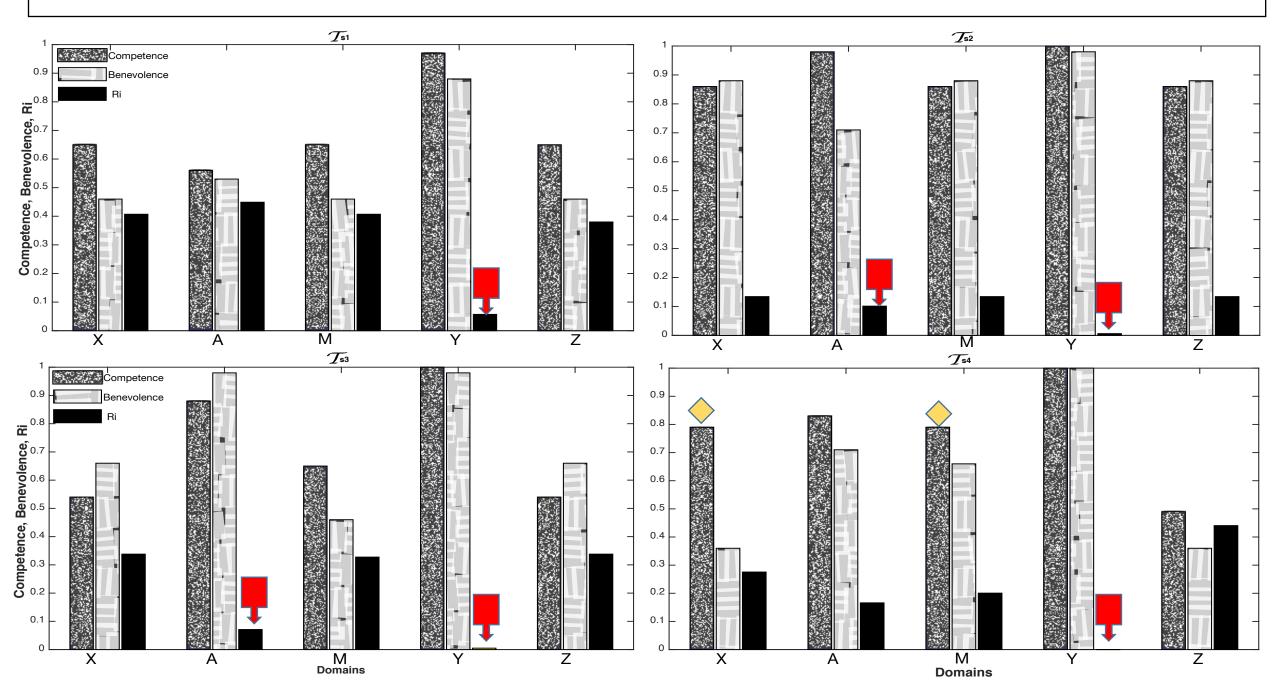

Sub-tasks:

 $\star \tau_{s1}$: provide resources within a certain time window,

 $\star \tau_{s2}$: monitor a certain traffic,

 $\star \tau_{s3}$: block a certain link,

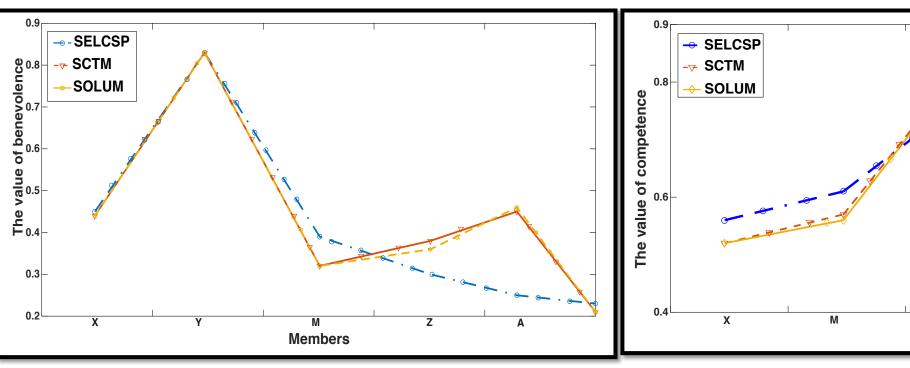
 $\star \tau_{s4}$: implement a certain counter measurement.

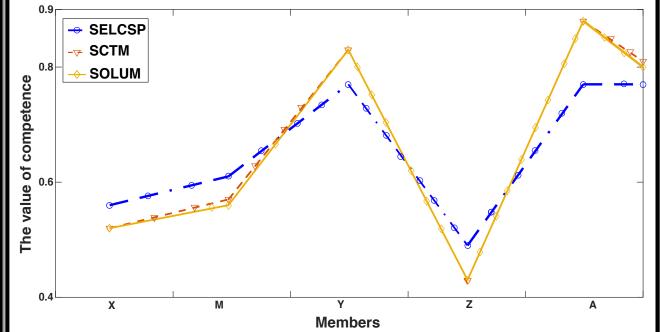


Selecting a "right" partner algorithm

Algorithm 2 Selecting a "right" partner (trustee) to collaborate on performing a task. Input: benevolence, competence and $Ri(x, y, s_i)$

- Employ the benevolence (see Section 3.3) and the competence (see Section 3.4) functions to calculate the competence and benevolence for all the members.
- Identify the first trust discriminator for each task to assign the weight to each factor.
- Use the value of the benevolence and competence to evaluate the interaction risk for each member (see Section 5).
- Recommend a domain for each task such that its estimated interaction risk Ri(x, y, s_i) is minimal.
- 5: if two members have the same $Ri(x, y, s_i)$ then
- Select a member with the maximum benevolence value.
- 7: end if
- 8: return Selected member(s)


Result



Evaluation

- Epinion¹ dataset a popular product review site.
 - ❖ Each user gives a trust value (−1 to 1) on other users.
 - ❖ And gives feedback ratings (1 to 5) on entities/items.
- ❖V = 1, Fdd = 2 and Fd = 3; 4; 5.
- ❖ Select five items from the dataset and evaluate benevolence and competence of each item.
- **SELCSP** Algorithm and SOLUM Algorithm.

Evaluation Result

The value of benevolence for three different algorithms

The value of competence for three different algorithms

Conclusion

- ❖ To evaluate the trustworthiness of a trustee the direct and indirect evidence on the given trustee were taken into account.
- The trust value is computed by two trust factors, namely competence and benevolence.
- **Benevolence** is computed from **direct** evidence between a trustee and a trustor
- **Competence** is assessed on the base of the **received feedback** from the other alliance members (a trustee's direct neighbors).
- *We are able to collect a **variety of evidence** on a trustee by introducing **eight dimensions** for each context.

Conclusion

- The interaction risk estimated through the SCTM by combining benevolence and competence.
- The **weighting factors** used to determine different weights to define the main trust factors in different trusting scenarios.
- We have shown that the stability of the alliance is dependent on the value of benevolence that led to a lower interaction risk.
- *We demonstrated that the SCTM is able to obtain **comparable results** to the other trust models that we evaluated.

Thank you.

Ameneh Deljoo

a.deljoo@uva.nl