
Seamless Integration and Testing
for MA Engineering

Mostafa Mohajeri Parizi1, Giovanni Sileno1, and Tom van Engers1

Informatics Institute, University of Amsterdam, Amsterdam, the Netherlands
{m.mohajeriparizi,g.sileno,t.m.vanengers}@uva.nl

Abstract. Testing undeniably plays a central role in the daily practice
of software engineering and this explains why better and more efficient
libraries and services are continuously made available to developers and
designers. Could the MAS developers community similarly benefit from
utilizing state-of-the-art testing approaches? The paper investigates the
possibility of bringing modern software testing tools as those used in
mainstream software engineering into multi-agent systems engineering.
Our contribution explores and illustrates, by means of a concrete ex-
ample, the possible interactions between the agent-based programming
framework ASC2 (AgentScript Cross-Compiler) and various testing ap-
proaches (unit/agent testing, integration/system testing, continuous in-
tegration).

Keywords: Multi-Agent Systems · Multi-Agent Systems Engineering ·
Testing · Continues Integration.

1 Introduction

Software testing is attracting increased interest in industry [1] and it is one of
the most used methods of software verification. One of the reasons of this success
lies in the advancement and popularization in the software engineering commu-
nity of methodologies commonly known as DevOps, in particular of techniques
of automated testing in continuous integration (CI). Generally, CI refers to the
facilitation provided by third-party tools for automating the build/test process
of a software. In recent years, online DevOps services such as TravisCI1 and
CircleCI2 have been increasingly used by software engineers to improve the effi-
ciency of their testing process, a practice which plausibly resulted in increased
quality of the developed software.

Very recently, Fisher et al. [18] have suggested that testing approaches would
be an important complement to formal approaches to MAS verification, if they

1 https://travis-ci.com/
2 https://circleci.com/

2 Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers

could be automated and integrated in a seamless way into MAS development.
In our view, seamless integration does not mean only that agent programmers
are able to use the vast amount of software testing tools available to mainstream
languages like Java or Python, but, more importantly, that they are also able to
use (almost) language- and framework- agnostic online services as those used for
CI. This paper explores this idea, aiming to illustrate what the MAS community
could gain by using industry standard testing tools and discussing what would
be the theoretical and practical trade-offs for this choice. We investigate possible
interactions of testing with agent-based programming, and its relation with other
verification techniques. More concretely, we demonstrate various approaches to
enhance the productivity of MAS development cycle in the AgentScript Cross-
Compiler (ASC2) framework [25] via mainstream testing and integration tools,
and then, we elaborate on how this approach can be generalized for other MAS
frameworks.

The motivation for this work arises from research conducted on data-sharing
infrastructures (e.g. data marketplaces). At functional level, a data-sharing appli-
cation corresponds to a coordination of several computational actors distributed
over multi-domain networks. Those actors generally include certifiers, auditors,
and other actors having monitoring and enforcement roles, ensuring some level of
security and trustworthiness on data processing [40]. Typically distributed across
several jurisdictions, networks may be subjected to distinct norms and policies,
to be added on top of the various infrastructural policies provided at domain level
and ad-hoc policies set up by the users. Some of these norms, as for instance the
GDPR, bind processing to conditions and specific purposes, but, more in gen-
eral, all compliance checking on social systems requires to know and to infer (in
case of a failure on expectations) why an actor is performing certain operations.
Agent-based programming, and particularly the Belief-Desire-Intention (BDI)
model [33], by looking at computational agents as intentional agents, provides
the “purpose” level of abstraction available by design, and for this reason it is a
natural technological candidate for this application domain.

The BDI model been extensively investigated as basis to represent com-
putational agents that exhibit rational behaviour [19] and multiple program-
ming languages and frameworks have been introduced based on it, as AgentS-
peak(L)/Jason [32, 6], 3APL/2APL [11], and GOAL [20]. Recent works as e.g.
[21, 25] investigated various issues holding when mapping logic-oriented agent-
based programs into an operational setting. In contrast, this paper focuses in-
stead on the development practice aspect: as soon as we attempted to program
data-sharing applications as agents, we experienced the lack of mature soft-
ware engineering toolboxes, thus hindering a continuous integration with the
infrastructural-level components developed in parallel by our colleagues.

The document proceeds as follows: section 2 provides a background and re-
lated works on verification of MAS, in section 3 we introduce our approach on
MAS testing in ASC2 framework with mainstream tools. An illustrative exam-
ple of this approach is presented in section 4. Finally, section 5 provides the
discussion and comments on possible extensions and future developments.

Seamless Integration and Testing for MA Engineering 3

2 Verification of (Multi-)Agent Systems

Verification is a crucial phase in any software (and system) development process
and as such it has been addressed also by the Multi-Agent Systems (MAS)
community. The survey presented in [2] provides an empirical review of over 230
works related to verification of MAS.

At higher level, approaches for the verification of autonomous systems fall
into five categories [18]: (a) model checking, (b) theorem proving, (c) static anal-
ysis, (d) run-time verification, and (e) systematic testing. While the first four
approaches (a-d) are considered formal or at least semi-formal, testing (e) is
deemed to be an informal approach to verification. Further, MAS verification can
be targeted at different levels, varying from fine-grained verification of agents at
a logical level [3] to verification of emergent properties in a system [12]. Ferber
[16] identifies three levels: (i) Agent level considers internal mechanisms and rea-
soning of an agent (ii) Group level consists in testing coordination mechanisms
and from interaction protocols of agents, and (iii) Society level checks for emer-
gent properties or if certain rules and/or norms are complied within the society.
In general, the choice of a verification method depends on the required level of
verification, as e.g. formal methods may not be applicable for the verification of
a large MAS with non-deterministic settings at the society level.

Most of the works on MAS verification point out that testing agent pro-
grams is far harder than testing normal software, on the grounds that agents
tend to have more complex behaviors, and deal with highly dynamic and often
non-deterministic environments (including other agents), on which they have
only partial control [28]. A series of recent empirical results [36, 35] was used to
conclude that with respect to certain distinct test criteria, testing BDI agents
can be practically infeasible. The all-paths criterion requires the test suite to
cover all the paths of the agent’s goal-plan graph; its application shows that
the number of tests needed to run is intractable [36]. In subsequent work, the
same authors study the minimal criterion of all-edges, requiring all edges of the
goal-plan graph to be covered. While not per se infeasible, results show that
even this criterion requires a (too) high number of tests [35].

These observations can explain why much of the work in verification of au-
tonomous systems and specifically of BDI agents have been towards the formal
verification of agent programs, a mathematical process for proving that the sys-
tem under verification matches the specification given in formal logic [4]. One of
the most successful formal methods for verification of software agents has been
model checking [9]. Model checking of BDI agents can be done as e.g. in [5] by
translating a simplified version of AgentSpeak(L) to Java programs and using the
Java Path Finder (JPF) verification tool. Probably the most notable works that
adopt a (semi-)formal model checking approach are those of the AJPF/MCAPL
framework [13, 17]; AJPF/MCAPL also relies on JPF to perform program model
checking on agent programs developed in multiple JVM-based BDI frameworks
by utilizing an implementation of the target language’s interpreter. Nevertheless,
although formal verification techniques as model-checking provide a high level
of guarantee, they are typically both complex and slow to deploy [37].

4 Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers

A number of approaches to testing (that is, informal verification) have also
been considered in the MAS literature. Some of those utilize model-based testing
[31, 39] and rely on design artifacts such as Prometheus design diagrams [30] to
generate tests and automate the testing process. Others consider a more fine-
grained approach to verify intentional agents [15, 29], focusing on white box tests
involving in the testing process the inner mechanisms of BDI agents (like plans
and goals). This method of testing has however been criticized in [23] as being
“too fine-grained”, proposing instead to perform testing at a module level, that
is, considering a set of goals, plans, and/or rules as a single unit. Still other works
refer to software testing techniques applied on MAS development, focusing on
testing agents and their interaction patterns as the main level of abstraction [10,
22]. At implementation level, such unit testing is performed in a Jade multi-
agent system via the JUnit library. The distinct agent-roles that are present
in the MAS are tested by means of mock agents that communicate with the
implemented Jade agents to verify their behavior.

Levels of Testing Software testing is generally categorized in four levels or
activities: (a) Unit testing is done to verify different individual components of
the software system in focus, (b) Integration testing verifies the combination of
different components together, (c) System testing is done to test the system as a
whole, and (d) Acceptance testing is done to check the compliance of the software
with given end-users’ and/or relevant stakeholders’ requirements.

A categorization for MAS testing from a development-phase activity perspec-
tive has been proposed in [26], consisting of five levels: (i) Unit testing targets
individual components of an agent, (ii) Agent testing aims at the combination
of the components in an agent including the capabilities like sensing its environ-
ment, (iii) Integration or Group testing includes the communications protocols
and the interactions of the agent with its environment or other agents, (iv) Sys-
tem or Society testing considers the expected emergent properties of the system
as a whole (v) Acceptance testing for a MAS stays the same as their counterpart
in software testing.

All these categorizations can be seen as guidelines to draw a conceptual line
between what should be tested for what purpose and when, in the different
phases of software development. This means that for each project it is up to the
designer to decide e.g. what counts as units, what interactions are considered
group and what are the properties of the system/society. Indeed, testing libraries
like JUnit or online continuous integration services like TravisCI or CircleCI stay
relatively agnostic on what type of tests are being done. We will follow here the
same principle by allowing the designer to create each test suite with different
scenarios containing one or multiple agents with varying types and allowing for
flexible success/failure criteria.

Coverage An important measure giving insights on the quality of a certain
test suite in a given system is coverage. Software engineering proposes differ-
ent criteria for coverage [27], varying from simple line coverage (denoting the

Seamless Integration and Testing for MA Engineering 5

percentage of the code that is covered by the test cases), to more sophisticated
metrics like cyclomatic complexity [24], more commonly known as branch cover-
age. Intuitively, the more a program is covered by a test suite the more confident
the designer can be about the behavior of the software. In fact it is a common
approach to set a minimum coverage boundary for software projects and if cov-
erage is below this limit the build chain is considered a failure even if the code
compiles correctly.

Several works have studied criteria for testing in Agent-Oriented Software
Engineering, and particularly in BDI-based agent programming [29]. However,
the abstract mechanisms underlying any BDI-based reasoning cycle concerning
e.g. treatment of plan context condition, plan selection and failure handling,
alongside the procedural specifications given in one agent’s script (e.g. the agent’s
plans), result in complicated branching in the agent’s effective code, a fact that
makes defining what is actually covered by a test suite difficult [36, 35].

3 Approach

Instead of investigating dedicated tools for testing BDI agents, our motivation
is to study under what conditions and how we can take advantage of existing
software testing coverage tools, so as to enable an integration of BDI agent-
based development with other types of development, occurring concurrently on
a production-level system. This practical (and unavoidable) necessity motivated
us to overlook or put aside the warnings and issues indicated in the literature.

Our study focuses in particular on the BDI framework AgentScriptCC (Cross-
Compiler) [25], here denoted ASC2. A short overview of ASC2 is presented in
section 3.1, whereas section 3.2 presents our approach to testing.

3.1 AgentScript Cross-Compiler (ASC2)

The ASC2 framework is a BDI agent programming framework centred around
a cross-compiler performing a source-to-source translation of a high-level Do-
main Specific Language (DSL) inspired by AgentSpeak(L)/Jason [32, 6] into ex-
ecutable JVM-based programs. Cross-compilation is not unique to ASC2 and
has been used by other recent agent-oriented frameworks such as Astra [14] and
Sarl [34]. ASC2 consists of: (1) a logic-based Agent-Oriented Programming DSL;
(2) an abstract execution architecture; (3) a translator that generates executable
models from models specified by the DSL; (4) tools that support the execution
of models.

AgentScript DSL The AgentScript DSL has a very close syntax to AgentS-
peak(L)/Jason [32, 6]. The main components of the DSL are (1) initial beliefs,
(2) inferential rules, (3) initial goals, and (4) plan rules. The initial beliefs and
goals express the mental state of the agent at the start of the execution. Initial
beliefs are a set of Prolog-like facts, and the initial goals designate the first inten-
tions to which the agent commits. Inferential rules are potentially non-grounded

6 Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers

declarative rules (Prolog-like), used to infer beliefs from beliefs. Plan rules are
potentially non-grounded reactive rules in the form of e : c⇒ f in which f is a
sequence of executable steps called the plan body that the agent has to perform
in response an internal (e.g. goal adoption, belief-update) or external (e.g. mes-
sage reception, perception) event e, if a context condition c is believed to be true
by the agent.

While the AgentScript DSL is very close to Jason, the translation-based na-
ture of ASC2 produces some disparities with respect to execution. An important
characteristic of this approach is how ASC2 agents access and perform primitive
actions [25]. Typically, in interpreter-based BDI frameworks primitive actions
need to be properly defined before they can be used by the agent. In ASC2 such
redefinitions are not needed and the agent program can directly access any en-
tity on the JVM’s class path. An example of this would be the .print function
in Jason, defined in the standard agent library and that underneath calls Java
print. In contrast, in an ASC2 program there is no need to define the primitive
action; the agent program can call Java/Scala’s print function by simply using
#print (where # is the prefix for calling any primitive action).

AgentScript Translator The ASC2 translator generates concurrent programs in a
lower-level executable language from agent scripts written in AgentScript DSL.
The reasoning cycle of ASC2 follows the same principles of what is proposed
for AgentSpeak(L) and further extended by Jason. But, while Jason and many
other BDI frameworks implement an interpreter and a reasoning engine to drive
the execution the of the agent programs as run-time, in ASC2, all the mecha-
nisms needed for execution with the exception of the externalized plan selection
function are generated as part of the agent’s executable code in form of control
flow statements.

AgentScript Execution Architecture The ASC2 implements an abstract execution
architecture that is used as a template for the Translator to generate the concur-
rent agent programs. The architecture introduced in [25] defines each agent as a
modular and extendable actor-based micro-system. In the current implementa-
tion of ASC2, the underlying language is Scala and the agents utilize the actor
model implementation of Akka3. The ASC2 architecture also defines multiple
components of the agents like their belief base and communication layer as ex-
ternal dependencies, enabling modularity with respect e.g. automated reasoning
or transportation functions.

3.2 Testing Approach

In a typical unit or integration test of a computational entity (e.g. a class, a
web service), the designer sets up an initial setting (e.g. one or multiple object
instances, web services, a client), and then, based on certain invocations (e.g.
function calls, access/service requests), a set of assertions are checked to verify
the internal state, or some observable behavior of the tested entity, or its effect on

3 https://akka.io

Seamless Integration and Testing for MA Engineering 7

Fig. 1. Compile/Test process of an ASC2 program with sbt

the environment (e.g. function results, service responses, modifications of other
entities).

Internal attributes (of objects or services) are generally harder to access and
therefore to verify. Best practices of Test-Driven Development (TDD) address
this issue by means of Dependency Injection (DI): the dependencies of each
entity should be instantiated from outside the entity and then passed to it e.g. as
parameters (typically to the class constructor in object-oriented programming).
This allows the tester to isolate and observe the internal mechanisms of the entity
under test by using “mocked” dependencies. To enhance testability, multiple
components of ASC2 agents, including their belief base and communications
layer, are injected as external dependencies.

In any certain situation, we can look at a single agent or multiple agents
(a MAS) as a computational entity, and this entity has also a set of internal
attributes, observable behavior, and possible interactions with its environment.
The single agent or multiple agents under test can be instantiated from one or
more scripts. The setting could include any other types of entities e.g. other
possibly mocked agents, external objects, etc. The initial state of the agent(s)
and of the other related entities defines the initial setting of the test, the invo-
cation/probing action of a test suite is typically a series of messages sent to the
agents. The expected effect(s), behavior(s) or state(s) of an entity rely heavily
on the entity under test. For a small system including one or only a few agents,
each message or the beliefs of the agent(s) may be needed to be verified, whereas
in a complex system, the designer may only need to verify emergent pattern in
the interactions of the agents or major shifts in the state of the system.

In our approach, we aim to allow the designer to utilize any off-the-shelf
testing tool (library, service, etc.) directly into their development chain, even
more so to enable the designer to test their program via any standard build
chain. In the case of the ASC2 framework, its current implementation is based
on Scala, and we considered as target build tool sbt4, which enables us to also
use JVM/Scala testing libraries like JUnit or ScalaTest. We have then developed
a sbt plugin5 that —as part of the compile task—iterates over the scripts written
in AgentScript DSL in the project sources and uses the AgentScript Translator to
generate Scala implementations of the agents. Code generation is a standard part

4 https://scala-sbt.org/
5 https://github.com/mostafamohajeri/sbt-scriptcc

8 Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers

1 +!init(W) : W > 1 =>

2 Nbr = "worker" + ((#name.replaceAll("worker","").toInt % W) + 1);

3 +neighbor(Nbr).

4

5 +!token(0) =>

6 #coms.achieve("master", done).

7

8 +!token(N) : neighbor(Nbr) =>

9 #coms.achieve(Nbr, token(N - 1)).

Listing 1: Token ring worker script in AgentScript DSL

of build tools like sbt or maven, therefore, the generated sources are also managed
by the build tool and are immediately available to rest of the project. The general
overview of the Compile/Test cycle of an agent-based system developed via ASC2
and built by sbt is presented in figure 1. Note that this process is fully automated
by sbt.

A MAS of this type can be started in two ways. After bootstrapping it as an
empty instance of the MAS infrastructure, the designer can either use configu-
ration files (e.g. JSON) to specify the agents of the system or alternatively, use
lower-level code (e.g. Scala/Java) to manually spawn agents via their respective
class in the generated code. In this work, we preferred the latter approach, as it
provides better control over the test scenarios.

To complete our Compile/Test process, in addition to the ScalaTest library,
we also used the Akka Testing library: at run-time, ASC2 agents are essentially
Akka actor micro-systems and this library provides many convenient tools for
testing actors. Both libraries are used out of the box and no modifications have
been done to adapt them to the framework. With this configuration, each sce-
nario to be verified can the written as a test suite in ScalaTest to test whether
one or multiple agents behave as expected.

4 Illustrative Example

To illustrate an application of our testing approach we consider a MAS con-
structed around a Token Ring system, commonly used in both distributed sys-
tems and MAS [25, 8]. This system consists of one master agent and W worker
agents; at the start of the program the master sends an init(W) message to all
worker agents to inform them of the total number of the workers in the ring,
each worker upon receiving this message finds its neighbor, forming a closed ring.
Then, T tokens are distributed among the workers, each token has to be passed
N times in the ring formed by workers. When all T tokens have been passed N
times and this was reported to the master, the program ends.

Seamless Integration and Testing for MA Engineering 9

4.1 Unit/Agent Testing

We will focus in particular on the script of the worker agents shown in listing 1.
We perform the tests taking the standpoint of a whitebox test engineer, meaning
that we test the script of the agent knowing its internal workings; nevertheless,
the tests are still performed externally, we do not modify the script in order to
test it6.

Testing Successful Scenarios By viewing the script in listing 1, we can see
that the agent has a total of 3 plans for 2 separate goals. Theoretically, we need
at least 3 tests to cover the successful execution of all the plans. However, while
the success criteria for plans is simple (completion of execution), achievements
of goals can be more complicated and the testing framework needs to provide
the flexibility to define them. The success criteria for the init(W) and token(N)

goals are quite different. In the latter the expected behaviour in both plans is
an observable event, i.e. a certain achieve message sent by the agent to another
specific agent. In the former case there is no observable behavior and the success
criterion is a specific update of the agent’s belief base.

The test specification we used for the worker agent can be seen in listing 2.
In line 3 an empty MAS object is created. The criterion of success for init(W)

plan depends on the agent’s beliefs, therefore we need to be able to verify the
internal state of agent’s belief base. First we create an instance of BeliefBase

class (line 4) and when the agent under test (worker1) is being instantiated (line
10), this object is injected in the agent as its belief base; with this approach at
any point in the tests we can simply access the agent’s beliefs to query them for
verification purposes or even modify the agent’s belief base for setting up test
scenario states.

Only one agent (worker1) is under test and the other agents present in the
suite can be mocked. As ASC2 agents are actor micro-systems, an agent can be
mocked by a single actor. In lines 5 and 6, two probe actors are created to be the
stand-ins for the master agent and (worker1)’s neighbor in the tests and they
are then registered to the system (lines 11 and 12). This type of mocking gives
us the ability to verify all the interactions that the agent under test may have
had with these probe actors.

The rest of the test suite contains 3 tests, in the first test in line 18 a goal
event init(50) is sent to the worker1 agent and it is expected that after this
goal is achieved (line 19), the belief base of the agent contains the belief defined
by the term neighbor(worker2) which is verified in line 20. In the next test,
a goal message token(0) is sent to the agent (line 24) and then it is verified
that the agent sends a done message to the master (line 25). The final test
follows the same pattern by sending a goal message token(10) (line 30) and the
verification includes a token(10-1) message to its neighbor (line 30). As these
tests are written in a standard testing library, build tools such as sbt can execute
them in their build chain. By running the tests in the sbt shell we are able to

6 https://github.com/mostafamohajeri/agentscript-test

10 Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers

1 class TokenRingWorkerSpec extends ... {

2

3 val mas = new MAS()

4 val verifiableBB = new BeliefBase()

5 val mockedMaster = testKit.createTestProbe[IMessage]()

6 val mockedNeighbor = testKit.createTestProbe[IMessage]()

7 val worker

8

9 override def beforeAll(): Unit = {

10 mas.registerAgent(new worker(bb = verifiableBB), name = "worker1")

11 mas.registerAgent(mockedMaster, name = "master")

12 mas.registerAgent(mockedNeighbor, name = "worker2")

13 worker = mas.getAgent("worker1")

14 }

15

16 "A worker agent" should {

17 "have its neighbor in its belief base after `!init(N)`" in {

18 worker.event(achieve,"init(50)").send()

19 mockedMaster.expect(GoalAchievedMessage())

20 assert(verifiableBB.query("neighbor(worker2)") == true)

21 }

22

23 "send a `!done` to master on `!token(0)`" in {

24 worker.event(achieve,"token(0)").send()

25 mockedMaster.expect(event(achieve,"done").source(worker))

26 }

27

28 "send a `!token(N-1)` to its neighbor on `!token(N)`" in {

29 worker.event(achieve,"token(10)").send()

30 mockedNeighbor.expect(event(achieve,"token(9)").source(worker))

31 }

32 }

33 }

Listing 2: Test suite for the worker agent

see the output presented in listing 3 that indicates our program has passed this
test.

[info] A worker agent should

[info] - have its neighbor in its belief base after `!init(N)`

[info] - send a `!done` to master on `!token(0)`

[info] - send a `!token(N-1)` to its neighbor on `!token(N)`

...

[info] All tests passed.

Listing 3: Output of the worker agent test suite

Seamless Integration and Testing for MA Engineering 11

1 "A worker agent" should {

2 "send a `NoApplicablePlan()` on `!init(-1)`" in {

3 worker.event(achieve,"init(-1)").source(mockedMaster).send()

4 mockedMaster.expect(NoApplicablePlan())

5 }

6

7 "send a `NoRelevantPlan()` on `!unknown`" in {

8 worker.event(achieve,"unknown").source(mockedMaster).send()

9 mockedMaster.expect(NoRelevantPlan())

10 }

11 }

Listing 4: Failure tests for worker agent

Testing Failure Scenarios Successful executions are only a part of the full
story. Indeed, in software testing it is acknowledged that covering failures is both
more important and challenging, and thus requires more critical thinking by the
test engineer [27]. Interestingly, failure tests are especially important in agent-
based programming because failing under certain conditions may sometimes be
the correct behavior for an agent.

Two failure tests are presented in listing 4. The first test sends a init(W)

goal message to the agent with W=-1 (line 3) but the first plan is applicable only
for W > 1 and the expected behavior of the agent in this situation is a failure
which is verified by expecting a NoApplicablePlan message. In the second test,
a goal message unknown is sent to the agent (line 8) for which the agent does
not have any plans and it should reply with a NoRelevantPlan (line 9). Note
that failure of a goal is not only reflected by the absence of an applicable plan
or more generally failure in execution of a plan; similar to the success scenarios,
the designer can define any other arbitrary criteria for a failure scenario.

Although we acknowledge that testing an agent program for every possible
failure can easily become an infeasible task [36, 35], certain failures may be par-
ticular important for the designer to test, therefore there is value in enabling
this possibility.

4.2 Coverage

We explore at this point whether and how off-the-shelf coverage tools such as
scoverage7 can be used for code coverage analysis of agent programs written
in ASC2, considering both statement and branch coverage aspect. To perform
this we simply add the scoverage plugin to our project and generate a coverage
report.

The coverage report produced for the worker agent by means of the previ-
ous tests is presented in Table 1. The worker.Agent row shows the coverage
for the internal mechanisms of the agent, like e.g. event handling, while the
other rows show the coverage report for each separate event, as an example, the

7 http://scoverage.org/

12 Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers

worker.token 1 refers to an event token in worker agent with 1 parameter. The
branch coverage report mainly concerns conditional statements in the generated
Scala code of the agent.

These results show that our tests indeed covered most of the behaviors that
the agent might have. In fact, by exploring the coverage analysis we can see the
reason for which the worker.token 1 has less coverage: the missed branch can
be explained by the fact that the tests did not include any scenario in which the
token(N) plan fails. Also note that while the example script did not contain any
sub-goals or conditional statements in the plans, ASC2 Translator generates sub-
goal adoptions as function calls and translates conditional statements to their
counterpart in the underlying language, therefore, coverage tools like scoverage
are able to calculate the correct number of covered and total possible branches
for deeper goal-plan trees.

Component Statement Coverage % Branch Coverage (Covered/Total)

worker.Agent 93.5 6/6

worker.init 1 93.5 2/2

worker.token 1 80.2 3/4

Table 1. Coverage analysis of the worker agent

4.3 Integration/System Testing

Even following the guidelines on categorizing different levels of testing in MAS
[26], there is no definite technical distinction in place. Typically test libraries
provide mechanisms such as annotations for the designer to label test suites
with its (their) related level(s) to orchestrate their execution. As illustration,
we consider an integration test to verify a token ring MAS system consisting of
the previously mentioned worker agents and a master agent. The test suite is
reported in listing 5.

The test will be centered around the interactions between agents and the state
of the system in a specific setting of our token ring. The token ring is defined
with 100 worker agents and 1 master agent (lines 12-13), and, to be able to
verify the exhibited interactions, we use dependency injection to initialize all
the agents by means of an overridden instance of the communication layer (line
4), created to record every message passed in the system into a list.

To invoke the system, a start(T,N) is sent to the master agent (line 15).
We are interacting with the master from a black box perspective: although the
event start(T,N) is exposed, the internal mechanisms of this agent are assumed
to be unknown.

Three criteria are verified for this system. Firstly, we consider a system level
performance based criteria as we expect the system to be terminated under
10 seconds (line 17). Next, we use two known expectations from a token ring

Seamless Integration and Testing for MA Engineering 13

1 class TokenRingIntegrationSpec extends ... {

2

3 //a communication layer that records a trace of the interactions

4 object recordedComs extends AgentCommunicationsLayer { ... }

5

6 val token_pattern = "token\\([0-9]+\\)".r

7 val done_pattern = "done".r

8

9 "A token ring MAS with W = 100, T = 50 and N = 4" should {

10 "have 250 `token(X)` and 50 `done` message" in {

11 // create the agents

12 mas.registerAgent(new worker(coms = recordedComs), num = 100)

13 mas.registerAgent(new master(coms = recordedComs), name = "master")

14 // invoke the system

15 mas.getAgent("master").event(achieve, "start(50,4)").send()

16 // verify the interactions

17 watchdog.expectTerminated(mas, 10.seconds)

18 assert(recordedComs.trace.count(token_pattern.matches) == 250)

19 assert(recordedComs.trace.count(done_pattern.matches) == 50)

20 }

21 }

22 }

Listing 5: Integration test suite for the token ring system

system to verify the correct execution of the system: at the end of execution,
there should be (a) T number of done messages and (b) T × (N + 1) number
of token(X) messages in the trace. The interaction verification statements are
presented respectively in lines 18-19. Recalling the flexible definitions of testing
levels, note that these integration/system test could be considered from the
perspective of master agent as a unit/agent level test possibly with mocking the
worker agents. Similar to previous tests, running this suite via sbt yields the
output in listing 6.

[info] A token ring MAS with W = 100, T = 50 and N = 4 should

[info] - have 250 `token(X)` and 50 `done` message

...

[info] All tests passed.

Listing 6: Output of the token ring integration test suite

4.4 Continuous Integration

The proposed approach for testing can be easily combined with online CI ser-
vices. This process generally includes utilizing source repositories like Github8,

8 https://github.com/

14 Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers

Fig. 2. Continuous integration applied on a Token ring program whose master and
worker agent scripts are located on other repositories.

CI services like TravisCI and code analysis services like Coveralls9. The only
step needed to set the CI cycle for an ASC2 project is to configure the source
repository of the project in a way that the automated CI cycle is triggered on
every push to the repository. This can be done by adding a configuration file
that provides information for the CI service how to compile and test the project
via sbt.

Following this method, a MAS project does not need to be only located in a
single source repository. For instance, different types of agents can be developed
in different projects by separate teams and only be used as dependencies in the
development of the system. We believe this is an interesting practical innovation,
improving the scalability of MAS projects with respect to their development.

An example of this CI process is presented in Figure 2 in which the sources of
worker and master agents are located in separate repositories, and a third token
ring repository uses them as dependencies. When the system designer pushes the
project to the repository, the CI service fetches the source and compiles/tests it
via sbt and records the results10. Then, the code coverage report is committed
to the code analysis service11.

5 Discussion and Future Developments

Despite the critical points/observations concerning MAS testing raised in the lit-
erature, in this paper we provide several support arguments for using mainstream
testing tools for MAS and agent-based programming, by means of a concrete use
case. We implemented a multi-agent system reproducing a token ring benchmark
with the framework ASC2, and then we run tests (success, failure, coverage) at
unit/agent level as well as at integration/system level.

At the unit and agent level (unit testing) we performed tests concerning
events, plans and goals. The somehow unexpected result of the experiment is
that such an approach does not neglect the theoretical complexity of BDI agents
but it truly offers a complementary tool for their development. We were able to

9 https://coveralls.io/
10 https://travis-ci.com/github/mostafamohajeri/agentscript-test
11 https://coveralls.io/github/mostafamohajeri/agentscript-test

Seamless Integration and Testing for MA Engineering 15

test successful (plan) completions, internal states and the belief base, failures,
and fine-grained interactions. These possibilities can be seen as offering con-
structs mapping e.g. to declarative and procedural goals in BDI agents [38]: the
designer can define the achievement/failure of a goal not only in terms of com-
pletion/exception of a plan, but also as determined by any arbitrary indicator
internal or external to the agent. This showed that testability of agent programs
defined in a framework is closely related to the design choices of that framework.

At the integration/group and system/society level (integration testing) we
performed tests with simple verification criteria, but these criteria can easily be
extended to more sophisticated and realistic interaction analysis and verification
methods developed by the MAS community [7]. Additionally, we illustrated how
the proposed approach enables the MAS designer to take advantage of continuous
integration (CI) services without extra effort. This is particularly important for
MAS designers that require to integrate and test their work continuously with
other projects.

There is an additional benefit of using mainstream test tools for BDI agents,
and especially for frameworks that are based on higher-level logic-based DSLs.
Those frameworks generally map primitive actions to constructs specified in a
lower-level programming language like Java. By using a testing process compat-
ible with both higher level models and lower level implementations, the testing
process can be more efficient and seamless for the designer specially if the agent
models are only a part of a project that includes other computational entities
that are being developed alongside the agents.

In this work we used the ASC2 agent programming framework to present our
approach, the intuition behind this choice was that frameworks based on cross-
compilation [14, 34] produce source codes that can be directly integrated within
standard build tools. Motivated by the success of works like AJPF/MCAPL [13]
that provides model checking for multiple BDI frameworks, as a future study
we intend to explore how to apply this approach to a wider range of MAS
frameworks. This raises the question: can our results be generalized to other
agent programming frameworks?

The answer, at the unit/agent level, depends on compilation and the execu-
tion model of those frameworks. For frameworks like Jade and JS-son [21], that
use mainstream programming languages to define agents, these tools should be
compatible out of the box with minor effort [22]. For cross-compilation-based
frameworks like Astra [14] and ASC2 [25] it is only the matter of tooling (e.g.
build tool plugins) to allow them to use mainstream testing tools. For interpreter-
based frameworks like Jason [6] and GOAL [20], because they require their own
dedicated reasoning engines and execution environment, testing via such tools
may prove to need more work and possibly modifications to the framework. On
the other hand, there are already many works that propose dedicated testing
and debugging approaches for interpreter-based frameworks [23].

However, at the integration and system level, and also with respect to com-
patibility with CI services, generally externalized to the execution of the tested
entity, we believe it is possible to consolidate other frameworks regardless of

16 Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers

their compile/interpret model. This could lead to seamless integration testing
of systems defined in each framework with mainstream software testing tools or
dedicated ones.

In perspective, our overarching research concerns socio-technical and com-
plex multi-domain infrastructures; we believe that Agent-Oriented Software En-
gineering can be a powerful technical tool with robust theoretical foundations for
designing, modelling, implementing and testing such systems. Enhancing their
development cycle goes with a seamless integration of multi-agent systems into
modern infrastructures. This is a critical requirement to utilize the full potential
of MAS in a real production-level setting.

Acknowledgements

The work as presented in this paper has been done as part of the Dutch Research
project ‘Data Logistics for Logistics Data’ (DL4LD), supported by the Dutch
Organisation for Scientific Research (NWO), the Dutch Institute for Advanced
Logistics ‘TKI Dinalog’ (http://www.dinalog.nl/) and the Dutch Commit-to-
Data initiative (http://www.dutchdigitaldelta.nl/big- data/over-commit2data)
(grant no: 628.009.001).

References

1. Software testing services market by product, end-users, and ge-
ography - global forecast and analysis 2019-2023 (Aug 2019),
https://www.industryresearch.co/software-testing-services-market-14620379

2. Bakar, N.A., Selamat, A.: Agent systems verification : systematic liter-
ature review and mapping. Applied Intelligence 48(5), 1251–1274 (2018).
https://doi.org/10.1007/s10489-017-1112-z

3. Behrens, T.M., Dix, J.: Model checking multi-agent systems with logic based Petri
nets. Annals of Mathematics and Artificial Intelligence 51(2-4), 81–121 (2007).
https://doi.org/10.1007/s10472-008-9092-7

4. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifiable multi-agent pro-
grams. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Com-
puter Science) 3067, 72–89 (2004). https://doi.org/10.1007/978-3-540-25936-7

5. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Autonomous Agents and Multi-Agent Systems 12(2),
239–256 (2006). https://doi.org/10.1007/s10458-006-5955-7

6. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of Agent-
Oriented Programming. In: Multi-Agent Programming: Languages, Platforms and
Applications, pp. 3–37 (2005)

7. Bot́ıa, J.A., Gómez-Sanz, J.J., Pavón, J.: Intelligent data analysis for the
verification of multi-agent systems interactions. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 4224 LNCS, 1207–1214 (2006).
https://doi.org/10.1007/11875581

Seamless Integration and Testing for MA Engineering 17

8. Cardoso, R.C., Zatelli, M.R., Hübner, J.F., Bordini, R.H.: Towards benchmark-
ing actor- and agent-based programming languages. In: Proceedings of the 2013
Workshop on Programming Based on Actors, Agents, and Decentralized Control.
p. 115–126. AGERE! 2013, Association for Computing Machinery, New York, NY,
USA (2013). https://doi.org/10.1145/2541329.2541339

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge,
MA, USA (2000)

10. Coelho, R., Kulesza, U., von Staa, A., Lucena, C.: Unit testing in multi-agent
systems using mock agents and aspects. In: International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems. p. 83–90. SELMAS ’06 (2006).
https://doi.org/10.1145/1138063.1138079

11. Dastani, M.: 2APL: A practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

12. David, N., Simão Sichman, J., Coelho, H.: Towards an emergence-driven software
process for agent-based simulation. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) 2581(301041), 89–104 (2003). https://doi.org/10.1007/3-540-36483-8

13. Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres, S.M.: Practical verifica-
tion of decision-making in agent-based autonomous systems. Automated Software
Engineering 23(3), 305–359 (2016). https://doi.org/10.1007/s10515-014-0168-9

14. Dhaon, A., Collier, R.W.: Multiple inheritance in agentspeak(l)-style programming
languages. In: Proceedings of the 4th International Workshop on Programming
Based on Actors Agents & Decentralized Control. Association for Computing Ma-
chinery (2014)

15. Ekinci, E.E., Tiryaki, A.M., Çetin, Ö., Dikenelli, O.: Goal-Oriented Agent Testing
Revisited. In: Luck, M., Gomez-Sanz, J.J. (eds.) Agent-Oriented Software Engi-
neering IX. pp. 173–186 (2009)

16. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. USA, 1st edn. (1999)

17. Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Verifying and val-
idating autonomous systems: Towards an integrated approach, vol. 11237. Springer
International Publishing (2019). https://doi.org/10.1007/978-3-030-03769-7

18. Fisher, M., Mascardi, V., Rozier, K.Y., Schlingloff, B.H., Winikoff, M., Yorke-
Smith, N.: Towards a framework for certification of reliable autonomous systems,
vol. 35. Springer US (2020). https://doi.org/10.1007/s10458-020-09487-2

19. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: Bdi logics for bdi architectures: Old
problems, new perspectives. KI - Künstliche Intelligenz 31(1), 73–83 (Mar 2017).
https://doi.org/10.1007/s13218-016-0457-5

20. Hindriks, K.V.: Programming Rational Agents in GOAL. In: Multi-agent program-
ming: Languages, platforms and applications, chap. 4, pp. 119–157 (2009)

21. Kampik, T., Nieves, J.C.: JS-son - A lean, extensible JavaScript agent program-
ming library. In: Engineering Multi-Agent Systems. vol. 12058 LNAI, pp. 215–234
(2020). https://doi.org/10.1007/978-3-030-51417-4

22. Khamis, M.A., Nagi, K.: Designing multi-agent unit tests using systematic test de-
sign patterns-(extended version). Engineering Applications of Artificial Intelligence
26(9), 2128–2142 (2013). https://doi.org/10.1016/j.engappai.2013.04.009

23. Koeman, V.J., Hindriks, K.V., Jonker, C.M.: Automating failure detection in
cognitive agent programs. Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS (December), 1237–1246
(2016). https://doi.org/10.1504/ijaose.2018.10017759

18 Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers

24. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering
SE-2(4), 308–320 (1976). https://doi.org/10.1109/TSE.1976.233837

25. Mohajeri Parizi, M., Sileno, G., van Engers, T., Klous, S.: Run, agent, run! archi-
tecture and benchmarking of actor-based agents. In: proceedings of Programming
based on Actors, Agents, and Decentralized Control (AGERE 2020). pp. 11–20
(2020). https://doi.org/10.1145/3427760.3428339

26. Moreno, M., Pavón, J., Rosete, A.: Testing in agent oriented methodologies. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 5518 LNCS(PART 2), 138–145
(2009). https://doi.org/10.1007/978-3-642-02481-8

27. Myers, G.J., Sandler, C.: The Art of Software Testing. John Wiley & Sons, Ltd
(2012). https://doi.org/https://doi.org/10.1002/9781119202486

28. Nguyen, C.D., Perini, A., Bernon, C., Pavón, J., Thangarajah, J.: Testing in multi-
agent systems. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6038 LNCS,
180–190 (2011). https://doi.org/10.1007/978-3-642-19208-1

29. Padgham, L., Zhang, Z., Thangarajah, J., Miller, T.: Model-based test oracle gener-
ation for automated unit testing of agent systems. IEEE Transactions on Software
Engineering 39(9), 1230–1244 (2013). https://doi.org/10.1109/TSE.2013.10

30. Padgham, L., Winikoff, M.: Developing intelligent agent systems: A practical guide,
vol. 13. John Wiley & Sons (2004). https://doi.org/10.1002/0470861223

31. Poutakidis, D., Winikoff, M., Padgham, L., Zhang, Z.: Debugging and Test-
ing of Multi-Agent Systems using Design Artefacts. No. May 2014 (2009).
https://doi.org/10.1007/978-0-387-89299-3

32. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Agents Breaking Away. pp. 42–55 (1996)

33. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS1995). pp.
312–319 (1995)

34. Rodriguez, S., Gaud, N., Galland, S.: Sarl: A general-purpose agent-oriented pro-
gramming language. In: International Joint Conferences on Web Intelligence (WI)
and Intelligent Agent Technologies (IAT). vol. 3, pp. 103–110 (2014)

35. Winikoff, M.: BDI agent testability revisited, vol. 31. Springer US (2017).
https://doi.org/10.1007/s10458-016-9356-2

36. Winikoff, M., Cranefield, S.: On the testability of BDI agent systems. IJCAI In-
ternational Joint Conference on Artificial Intelligence 2015-January, 4217–4221
(2015)

37. Winikoff, M., Dennis, L., Fisher, M.: Slicing Agent Programs for More Effi-
cient Verification, vol. 11375 LNAI. Springer International Publishing (2019).
https://doi.org/10.1007/978-3-030-25693-7

38. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural
goals in intelligent agent systems. In: 8th International Conference on Principles
of Knowledge Representation and Reasoning. p. 470–481. KR’02 (2002)

39. Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing for agent sys-
tems. pp. 10–18. No. May 2014 (2007). https://doi.org/10.5220/0002585900100018

40. Zhou, X., Cushing, R., Grosso, P., Engers, T.V.: Policy Enforcement
for Secure and Trustworthy Data Sharing in Multi-domain Infras-
tructures. In: Engineering Multi-Agent Systems. pp. 104–113 (2020).
https://doi.org/10.1109/BigDataSE50710.2020.00022

