
A policy com
pliance detection architecture for data exchange infrastructures Lu Zhang

A policy compliance detection
architecture for data

exchange infrastructures

Lu Zhang

A policy compliance detection
architecture for data

exchange infrastructures

Lu Zhang

This work was financially supported by the Dutch NWO Research project “Data Logistics for

Logistics Data” (DL4LD, www.dl4ld.net), supported by the Dutch Top consortia for

Knowledge and Innovation “Institute for Advanced Logistics” (TKI Dinalog, www.dinalog.nl)

of the Ministry of Economy and Environment in The Netherlands and the Dutch Commit-to-

Data initiative (https://commit2data.nl/).

Copyright © 2022 by Lu Zhang

Cover designed by Lu Zhang

Printed by IPSKAMP, Enschede

ISBN: 978-94-6421-890-9

A policy compliance detection architecture for data exchange infrastructures

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op woensdag 19 oktober 2022, te 10.00 uur

door Lu Zhang

geboren te Shandong

Promotiecommissie

Promotores: prof. dr. ir. C.T.A.M. de Laat Universiteit van Amsterdam
dr. P. Grosso Universiteit van Amsterdam

Copromotores: prof. dr. ing. L.H.M. Gommans Universiteit van Amsterdam

Overige leden: prof. dr. B. Otto Technische Universität
Dortmund

prof. dr. P.T. Groth Universiteit van Amsterdam
prof. dr. T.M. van Engers Universiteit van Amsterdam
dr. Z.A. Mann Universiteit van Amsterdam
dr. Z. Zhao Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Contents

1 Introduction 1
1.1 Research questions . 3
1.2 Thesis outline and contributions 5
1.3 Publications . 6
1.4 Source code . 7

2 Select infrastructures with collaboration relationship modelling 9
2.1 Introduction . 10
2.2 Digital Data Marketplace and collaboration models 11

2.2.1 Archetypes . 12
2.2.2 Application request . 14

2.3 Modelling of multi-party collaborations 15
2.4 Selection of collaboration archetypes in a DDM 16

2.4.1 Algorithm overview . 17
2.4.2 Stage I: filtering with hard requests 17
2.4.3 Stage II: distance calculation and archetype selection . . . 18

2.5 Evaluation metrics of a DDM . 20
2.5.1 Coverage . 21
2.5.2 DDM extensibility . 22
2.5.3 Application extensibility 23
2.5.4 Precision . 24
2.5.5 Flexibility . 24
2.5.6 Intelligent selection algorithm 24

2.6 Performance evaluation and results analysis 26
2.6.1 Spatial distribution and mutual distances 26
2.6.2 Metrics evaluation from DDM provider perspective 26
2.6.3 Intelligent selection of DDMs 30

2.7 Related work . 32
2.8 Conclusions and future work . 33

i

3 Risk assessment framework 35
3.1 Introduction . 35
3.2 System architecture . 37
3.3 Module I: Application-oriented threat identification 38

3.3.1 Mapping between Microsoft STRIDE model and security
features . 38

3.3.2 Applications of DDM-governed data exchange 39
3.3.3 Threat modelling . 40

3.4 Module II: Risk assessment of an individual threat 41
3.4.1 Original DREAD model 42
3.4.2 Modified DREAD model for DDMs 43

3.5 Module III: Risk mitigation and risk level evaluation 45
3.5.1 Security countermeasures matching and threat mitigation . 46
3.5.2 Total risk level of an application 48

3.6 System stability due to subjective choices 48
3.6.1 Physical effect of value vectors 48
3.6.2 Metrics definition . 49

3.7 Experimental validation of system stability 51
3.7.1 Experimental design . 51
3.7.2 Experimental threat database 52
3.7.3 Analysis of Kendall’s Tau values 52
3.7.4 Analysis of normalised mean square error (NMSE) 55

3.8 Experimental validation of system resolution 58
3.8.1 Definition of granularity and experimental design 58
3.8.2 Analysis of granularity values 58

3.9 Related work . 60
3.10 Conclusions and future works . 62

4 Policy compliance detection with syscall profiling 63
4.1 Introduction . 63
4.2 Architecture . 65
4.3 Profile generation . 66
4.4 Classic n-gram profiles and limitations 68
4.5 Profiling with n-gram frequency distributions 69
4.6 Self variance and mutual distance 71
4.7 Stability of proposed methodology 73

4.7.1 Stability over different platform OSs 74
4.7.2 Stability over different training data sets 75

4.8 Classification accuracy . 76
4.8.1 Procedure . 76
4.8.2 Results . 78

4.9 Discussion . 78
4.10 Related work . 79

ii

4.11 Conclusions and future works . 80

5 Real time intrusion detection systems 81
5.1 Introduction . 81
5.2 System description . 83
5.3 Detection engine . 84

5.3.1 Pre-processing module . 84
5.3.2 Anomaly detection module 84
5.3.3 Anomaly analysis module 86

5.4 Experimental dataset construction 86
5.4.1 Dynamic applications: CouchDB and MongoDB 87
5.4.2 Static application: machine learning applications 88

5.5 Experimental design . 88
5.5.1 Segmentation length . 89
5.5.2 Feature extraction . 89
5.5.3 Kernel functions . 90
5.5.4 Evaluation metrics . 90

5.6 Performance of anomaly detection module 91
5.7 Performance of anomaly analysis module 94
5.8 Related work . 95
5.9 Conclusions and future works . 95

6 Defending against poisoning attacks for IDS 97
6.1 Introduction . 98
6.2 Background . 98
6.3 Poisoning strategies . 99

6.3.1 Nearest first attack . 99
6.3.2 Furthest first attack . 99
6.3.3 Adversarial label flips attack (ALFA) 100

6.4 The data sanitization with DBSCAN 100
6.4.1 The DBSCAN clustering algorithm 100
6.4.2 Sanitization flowchart . 101

6.5 Experiments and dataset . 102
6.5.1 Dataset . 102
6.5.2 Experimental design . 103

6.6 Results analysis of performance degradation and improvement af-
ter sanitization . 105
6.6.1 Performance degradation 105
6.6.2 The effectiveness of the sanitization process 106

6.7 Influences of distance metrics and dimensionality reduction tech-
niques . 108

6.8 Related work . 109
6.9 Conclusions and future works . 110

iii

7 Conclusions and future works 111
7.1 Answers to research questions . 112
7.2 Future works . 115

7.2.1 Improve the anomaly-based IDS 115
7.2.2 Improve the sanitization mechanism 116

Bibliography 117

Publications 127

Summary 129

Samenvatting 131

Acknowledgements 133

iv

Chapter 1
Introduction

In the era of big data, nearly everything in daily life is collected and digitalized,
from health care records to airplane engine information. According to [1], there
are 2.5 quintillion bytes of data created each day in 2021. Utilising and deriving
useful information from this massive scale of data have gained significant attention
from both academic and industrial sides. The rapid development of machine
learning techniques provides a way for learning from a large amount of data
and subsequently using the obtained model to improve their decision-making
capabilities. For instance, an airline company may use a machine learning model
to predict whether an aircraft engine needs to be maintained or not. Digital
collaboration between airline operators can increase maintenance efficiency and
lower cost. In the health care domain, a doctor can better diagnose a disease and
provide personalised advice with a machine learning model [2].

In principle, better results can be accomplished if more training data is avail-
able, improving generalisation and accuracy. It is beneficial for multiple organi-
sations to aggregate their data and take advantage of a better result for a com-
mon goal. However, those organisations usually have concerns about such digital
collaboration. The organisations that possess the same type of data normally
compete with each other. This makes them reluctant to share their data and col-
laborate digitally. They may worry about the exposure of sensitive information
to competing companies may pose risk. It is critical to establish digital infras-
tructures to facilitate secure data sharing and boost the trust of collaborating
parties.

There are other works focused on designing and establishing secure data shar-
ing platforms. Ma et al. established a platform to share digital medical records
among patients and hospitals. The data is stored in a centralized manner on a
public cloud and accessed by mobile devices. It proposed a cryptographic ac-
cess control model to achieve fine-grained data sharing management [3]. Lu and
Cheng also targeted the secure sharing of medical data. The authors proposed
a lightweight data sharing platform. The mechanism protected the data privacy

1

2 Chapter 1. Introduction

based on identity-based broadcast encryption and proposed a data integrity veri-
fication mechanism to enhance security. However, these platforms do not address
computing security. [4].

The SDSBT platform developed by Lei et al. made effort to secure the data
processing stage. The platform built the mechanisms to support identity authen-
tication and preserve privacy. It also adopted blockchain technology to further
secure the data sharing process. The transactions of data sharing are stored in the
smart contract for accounting and auditing. The secure data federation process
is conducted with trusted execution environment (TEE) technology, which pro-
vides secure containers to guarantee data isolation between trusted and normal
environments [6]. However, the SDSBT platform only allows data to be gathered
and executed on a trusted third party, e.g. the TEE platform. It can not support
other collaborating models that fulfil the requirements, such as ensuring data
sovereignty, of participating parties. In addition, the influences of various data
federation applications on the performance of platforms are not well addressed.

Different data federation applications have different collaboration models,
workflows, and security requirements. The collaboration models and workflows
depend highly on the participants’ multi-lateral trust relationships and local reg-
ulations. Some applications may have strict requirements that the shared data
should be in the proximity of the providers or cannot go across the country
boundary. Similarly, the security requirement also varies with data federation
applications. For instance, privacy protection is normally a critical requirement
for digital collaborations in the health care domain. In addition, the performance
requirement of a data federation application may also vary due to the data vol-
ume or algorithm complexity. It is important to develop secure data sharing
infrastructures that take the requirements of a concrete application request into
account.

The NWO research project data logistic for logistic data (DL4LD) proposed
the concept of a consortium governed Digital Data Marketplace (DDM) to fa-
cilitate secure and trustworthy data sharing and federation that complies with a
customer-defined policy 1. A policy is a pre-agreed contract among all collabo-
rating parties regulating how data is stored, accessed, shared and transformed.
Firstly, data sharing and federation should comply with various local law require-
ments. For instance, the European Union General Data Protection Regulation
(GDPR) privacy law applies to organizations that collect and process personal
information within or outside the European Union. The main principles of GDPR
include purpose limitation, data minimization, accuracy, storage limitation, in-
tegrity and confidentiality and accountability [7]. Secondly, the digital collabora-
tion should also allow the autonomy of participants to make their own rules.

In a DDM consortium, archetypal patterns are defined to describe the work-
flows of data access and distribution. An archetypal pattern is used to specify or

1www.dl4ld.nl

1.1. Research questions 3

instantiate a particular DDM infrastructure. Distributed security control mech-
anisms are designed and implemented in a DDM infrastructure to detect policy
compliance and therefore enforce the rules of data exchange and federation.

1.1 Research questions
Considering aspect of a DDM that can be optimized based on a collaboration
request to share data in a policy compliant way, we can identify that it is necessary
to develop criteria to select the archetypal infrastructure patterns based on a
concrete policy of a data federation application. In addition, as the community
grows, there might be multiple infrastructures already available. Infrastructure
reuse is important to lower the cost. Therefore, it is important to give a systemic
description of available DDM digital infrastructures and allow the collaborating
parties to compare them. To make the organisations more confident to outsource
their data, it is critical to provide the expected or guaranteed risk level for their
data federation applications. Also, efforts need to be made to design effective
security mechanisms for policy enforcement. When considering the life cycle of a
data asset, we can see that there are plenty of investigations and implementations
of security controls for data in transit and at rest. However, work to enforce the
policy during the execution stage is still limited.

To meet the above-mentioned challenges and facilitate policy-driven data shar-
ing and federation with the concept of DDM, we identify our main research ques-
tion (RQ) as:

How to select application-tailored infrastructure patterns and enhance policy
compliance capabilities?

The optimal infrastructure patterns depend on concrete policy-driven data
federation applications. Different applications may have different application re-
quests, such as collaboration relationships, data sharing policies and security
requirements. We need to develop mechanisms that select best-fit infrastructure
patterns with the input of an application request. First, we need to consider
the compatibility between the required collaboration models and the provided
infrastructure patterns. To get insight into this procedure, we formulate our first
sub-question:

• RQ1: How to map an application request to a best-fit digital infrastructure
pattern based on collaboration models?

To answer this question, we first model the multi-lateral collaboration rela-
tionships with numeric representations with mathematical tools. After modelling,
we define similarity measures between collaboration models. Thus we can identify
the closeness of two collaboration models even if a perfect match does not exist.
We also provide a pre-processing algorithm for more commensurable comparison
because the mapping process is at the archetypal level. With an infrastructure

4 Chapter 1. Introduction

pattern fulfilling the collaboration request, it is essential to let the participating
parties know how much security can be guaranteed for the delegated data sharing
application and rank the available ones. To solve this problem, we formulate our
second sub-question:

• RQ2: How to select an optimal digital infrastructure with minimum risk?

We propose a risk assessment system based on the STRIDE/DREAD model from
Microsoft. The system quantitatively evaluates the remaining risk of an input ap-
plication workflow after applying the security controls of a digital infrastructure.
It therefore allows us to rank available digital infrastructures and select the best-fit
one. We also tackle the unavoidable subjective choices of the STRIDE/DREAD
model parameters and prove that our proposed system is robust with our experi-
mental results. We conduct a thorough threat analysis for typical data exchange
scenarios and a literature study for the available countermeasures. We notice that
there are not many promising security mechanisms to enforce the policy during
the execution when the algorithm performs on the data in the data federation
application. To improve the security level of a DDM digital infrastructure, we
formulate our third sub-question:

• RQ3: How to develop policy compliance detection components during exe-
cution?

Due to the normally competing relationships among the collaborating parties, it is
not feasible to allow the data providers to access the source code of the algorithm.
The most promising solution seems to be external monitoring. System call traces
serve as an interface between the Linux kernel and the applications and are widely
used to model the dynamic behaviours of a running program. We monitor the
generated system call traces in real time during the execution. In Chapter 4,
we propose a methodology to profile and distinguish running algorithms. The
component can detect the policy violation if the data is not accessed by the
authorised algorithm in the policy.

In addition, we develop a real time machine learning based host-based intru-
sion detection system (HIDS) by monitoring the system call traces in Chapter 5.
This component monitors whether the data federation process complies with the
policy regarding data confidentiality or integrity.

To achieve better accuracy and generalisation of a machine learning based
IDS model, it is common to get the training or re-training data from the crowd.
This enlarges the attack surface and provides the attacker opportunities to insert
malicious samples into the training data. It is crucial to enhance the architecture
with a model to defend against poisoning attacks. This leads to our final sub
research question:

• RQ4: How to defend against adversarial machine learning attacks for the
monitoring components?

1.2. Thesis outline and contributions 5

In chapter 6, we propose a sanitization mechanism based on the DBSCAN
clustering algorithms that can filter out malicious samples and improve the per-
formance of the architecture.

1.2 Thesis outline and contributions

CH1: Introduction

RQ1

CH2: Infrastructure
selection with compatibility

modeling, similarity measure,
validation

RQ2

CH3: Infrastructure
selection with risk level
threat analysis, risk assessment

framework, robustness validation

RQ4

CH6: Defending poisoning
attacks

degradation evaluation, DBSCAN,
experimental validation

RQ3

CH5: IDS

OC-SVM, attack
dataset, validation

CH4: Profiling

profiling, verification,
stability, accuracy

CH7: Conclusions and future works
Answer to research questions, future work

Figure 1.1: Thesis outline

Figure 1.1 visualise the outline of the thesis outline. In Chapter 2 we in-
troduce the DDM concept in more detail and a mechanism that can map an
application request to a best-fit infrastructure pattern considering the required

6 Chapter 1. Introduction

multi-lateral relationships. The mechanisms include mathematical modelling and
similarity measure definition. We also validate the approach with a specific lo-
gistic use case. In Chapter 3, we present how to select a digital infrastructure
with a minimum risk level. An application-dependent threat-analysis driven risk
assessment framework is introduced. We also investigate the robustness of the
proposed system due to objective choices of input parameters. In Chapter 4, we
introduce an architecture that distinguishes algorithms running inside a container
only by external monitoring. The architecture comprises source code verification,
dynamic profiling in a trusted platform and system call monitoring and profile
validation in the execution platform. This can serve as a component in DDM
digital infrastructure to monitor policy compliance. The performance of the pro-
posed architecture is also discussed with experimental results. In Chapter 5, we
introduce a hybrid IDS by analysing the monitored system calls with OC-SVM
as the anomaly detection algorithm. This can be used as an extension of the
policy compliance detection architecture mentioned in Chapter 4. In Chapter
6, we address the vulnerabilities of machine learning based IDS to mitigate the
threat of poisoning attacks. We investigate the performance degradation of an
OC-SVM based anomaly detection model with different poisoning strategies. In
addition, we propose a sanitization mechanism and demonstrate its effectiveness
with experimental results.

Finally, in Chapter 7, we summarise the answers to our research questions
and discuss interesting directions for the future.

1.3 Publications
In this section, we highlight main publications that are highly related to this
thesis and describe the authors’ contributions. The full list of publications can
be found at the end of the thesis.
Lu Zhang “Management of collaborations in digital marketplaces” in proceed-
ings of the 2019 International Conference on High Performance Computing and
Simulation (HPCS 2019). L.Zhang proposed the methodology of modeling col-
laboration relationships.
Lu Zhang, Reginald Cushing, Leon Gommans, Cees De Laat, and Paola Grosso,
“Modeling of collaboration archetypes in digital marketplaces” in journal IEEE
Access, DOI: 10.1109/ACCESS.2019.2931762. L.Zhang proposed the modeling
methodology and performed the experimental evaluation. L.Gommans designed
the archetypes for the digital data marketplaces. The remaining authors super-
vised.
Lu Zhang, Arie Taal, Reginald Cushing, Cees de Laat, Paola Grosso, “A risk
level assessment system based on the STRIDE/DREAD model for Digital Data
Marketplaces” in journal International Journal of Information Security. L.Zhang
developed the risk assessment framework and performed the experimental sim-

1.4. Source code 7

ulations. A.Taal provided guidance on the notation and formalization of the
equations. The remaining authors supervised.
Lu Zhang, Reginald Cushing, Ralph Koning, Cees de Laat, Paola Grosso, “Pro-
filing and discriminating of containerized ML applications in Digital Data Market-
places (DDM)” in proceedings of the 7th International Conference on Information
Systems Security and Privacy (ICISSP 2021). L.Zhang proposed the profiling
methodology and performed experimental analysis. R.Cushing and R.Koning
provided the federated learning use case. The remaining authors supervised.
Lu Zhang, Reginald Cushing, Cees de Laat, Paola Grosso, “A real-time intrusion
detection system based on OC-SVM for containerized applications” in proceed-
ings of the 24th IEEE International Conference on Computational Science and
Engineering (CSE 2021). L.Zhang designed the structure of the IDS system and
conducted the experiments for the performance validation. The remaining au-
thors supervised.
Lu Zhang, Reginald Cushing, Paola Grosso, “Defending OC-SVM based IDS
from poisoning attacks” in proceedings of the 2022 5th IEEE Conference on De-
pendable and Secure Computing/SECSOC workshops. L.Zhang designed the
sanitization mechanisms and conducted the experiments for the performance val-
idation. The remaining authors supervised.

1.4 Source code
The scripts and experimental data for each chapter are available at https://
github.com/kelsey-1015/phd thesis code data.git

https://github.com/kelsey-1015/phd_thesis_code_data.git
https://github.com/kelsey-1015/phd_thesis_code_data.git

Chapter 2

Select infrastructures with collaboration
relationship modelling

DDM infrastructures aim to facilitate secure multi-lateral data exchange applica-
tions. On the one hand, a policy is agreed by all collaborating parties, regulating
how, where, and what can be done with the traded data for each application. On
the other hand, there are a number of available digital infrastructures with differ-
ent supported collaboration patterns. It is important to allow the participating
parties to select a best-fit digital infrastructure for their particular data exchange
applications. In this chapter, we answer our RQ1 by presenting an algorithm
that identifies the compatibility of any collaboration request and provides digi-
tal infrastructures by numerical modelling and similarity measurement. We also
propose multiple metrics which allow to evaluate and compare competing DDM
infrastructures systemically from a number of dimensions: coverage, extensibility,
precision and flexibility. We demonstrate the effectiveness of these metrics in a
concrete use case.

This chapter is based on:

• Lu Zhang, Reginald Cushing, Leon Gommans, Cees De Laat, and
Paola Grosso. “Modeling of collaboration archetypes in digital market
places.” IEEE Access 7 (2019): 102689-102700.

• Lu Zhang “Management of collaborations in digital marketplaces.”
In 2019 International Conference on High Performance Computing
and Simulation (HPCS), pp. 1014-1016. IEEE, 2019.

9

10 Chapter 2. Select infrastructures with collaboration relationship modelling

2.1 Introduction

A potential customer of a DDM normally participates in different data federation
applications for different purposes. Both collaborating partners and collaboration
requests vary. For instance, airline companies would like to predict the necessity
of aircraft maintenance with AI/ML algorithms. They can certainly benefit from
a more accurate prediction model by gathering data from the same type of air-
craft. However, one company may need to collaborate with a different set of
airline partners for different aircraft types. Correspondingly, the policy changes
with different trust relationships among involved parties. Each DDM provider
may support one or more infrastructure patterns. DDM customers, who would
like to collaborate for data sharing and federation for a common goal, may come
to a DDM with a concrete application request and seek a best-fitted collaboration
archetypal infrastructure pattern. Therefore, it is crucial to develop mechanisms
to map any application request into a best-fit infrastructure pattern. It is also im-
portant to have a systematic description of those DDMs to allow DDM customers
to compare competing ones.

The main contributions of this chapter are:

• We model multi-party collaborations numerically with 3D matrices; We also
develop an algorithm to reason on the mathematical representations of col-
laborations with an effort to match any concrete, complicated collaboration
request into the best fit distributed computing archetype from the DDM.

• We define multiple metrics to evaluate a DDM infrastructure from vari-
ous aspects; namely, we identify coverage and extensibility as metrics to
describe properties and features of a DDM itself; and precision and flexibil-
ity describe the performance associated with a specific user request to the
DDM.

The rest of the chapter is organised as follows. Section 2.2 introduces the
detailed definition of a DDM infrastructure and collaboration models. Section
2.3 describes the methodology we use to model the multi-lateral collaboration
relationships. In Section 2.4, we present an algorithm to compute the mutual
similarities between the collaboration models and to select the closest DDM in-
frastructure. In Section 2.5, we introduce the concrete definitions of 4 DDM
evaluation metrics. We further demonstrate the real-world usefulness of our pro-
posed methodologies with a DL4LD use case in Section 2.6. Section 2.7 presents
the related work and Section 2.8 concludes the chapter.

2.2. Digital Data Marketplace and collaboration models 11

Data object providers Compute object
providersFuture Internet Capabilities

Policy

Infrastructure
Patterns

Deployment
Specifications

Data Exchange
Infrastructure

Accounting &
Auditing

Registry

National Law &
Regulations

Market rules

Digital Data Marketplace
Membership Organisation

Figure 2.1: A high-level framework of a Digital Data Marketplace.

2.2 Digital Data Marketplace and collaboration
models

Figure 2.1 illustrates the high level framework of a DDM. The dotted blue box
illustrates a membership organization governing the activities within a DDM.
The participating members of a data federation application, including data object
providers and compute object providers, first agree on a policy. The policy, based
on market- and national rules, includes concrete rules such as how the data and al-
gorithm flow, where to perform the computation, the specific use of the outsourced
data, and the data security requirement. Infrastructure patterns are archetypal
patterns defined to describe the workflows of data access and distribution. It can
be used to specify or instantiate a particular DDM infrastructure. The deploy-
ment specification drives the concrete digital infrastructure generation according
to the infrastructure patterns. Virtual infrastructures can be established with
container virtualisation and overlay networks. In a data exchange infrastructure,
we need to develop and implement distributed security mechanisms to monitor
and enforce policy and rights. With the support of the membership organization
driven governance model and security mechanisms, the DDM infrastructure can
boost the trust of the data providers to collaborate digitally for data sharing and
federation.

The main components of a DDM instance are defined as follows:

• Data object: A data object is a dataset of a given owner that would be
aggregated in the data federation application. Each data object is uniquely
identified.

• Compute object: A compute object is an algorithm that would execute
on the data objects in the data federation application. Each compute object

12 Chapter 2. Select infrastructures with collaboration relationship modelling

is uniquely identified and encapsulated in containers for better portability
and isolation.

• Data provider: A data provider is a party who provides data objects in
the data federation application.

• Compute object provider: A compute object provider is a party who
provides compute objects in the data federation application.

• DDM customer: DDM customers are collaborating parties who delegate
their data federation applications to a DDM infrastructure. DDM cus-
tomers can be either data providers or compute object providers.

• DDM provider: A DDM provider offers DDM digital infrastructures
with security countermeasures with policy enhancement capabilities. There
might be a number of available DDM digital infrastructures.

Collaboration models describe multi-lateral collaborating relationships. Nor-
mally, collaboration models are defined and described from both the DDM provider
perspective and the DDM customer perspective. Here we clarify some terminolo-
gies for better explanations. From the DDM provider side, we call those collabo-
ration model archetypes. From a DDM customer side, we call those collaboration
models application requests.

2.2.1 Archetypes
According to the definition in [8], archetypes are defined as an original model or
type based on which similar things are patterned. We call these collaboration
models archetypes because they only capture the main features but are not spe-
cific to some details. Those details include the concrete participating parties and
the total number of parties for the collaboration. Figure 2.2 illustrates seven col-
laboration archetypes defined in project DL4LD. All the collaboration archetypes
describe the scenarios in that multiple parties, Domain 1, Domain 2, Domain 3
and Domain 4, aggregate their data and compute objects for a result to achieve a
common goal. The execution can be performed on the data object provider side,
on the compute object provider side of the trusted third party.

In Archetype I illustrated in Figure 2.2a, all the data objects from Domain 1
to 3 are transferred to the compute object provider side (Domain 4). The com-
pute object provider aggregates the data with the compute object and outputs
the result. In Archetype II as shown in Figure 2.2b, data objects and compute ob-
jects are aggregated in an isolated container in a trusted third party and the final
result is sent to the customer directly. In Archetype III as shown in Figure 2.2c,
compute objects come to the execution platforms of the data object providers.
The data objects are processed locally in separate containers. Intermediate re-
sults, illustrated as stars, are then transmitted to compute object provider and

2.2. Digital Data Marketplace and collaboration models 13

DDM customer

Domain 4

Domain 1 Domain 2 Domain 3

Trusted Third Party

P
C

(a) Archetype I

DDM customer

Domain 4

Domain 1 Domain 2 Domain 3

Trusted Third Party

C

PC

(b) Archetype II

DDM customer

Domain 4

Domain 1 Domain 2 Domain 3

Trusted Third Party

P
C

P PC C C P

(c) Archetype III
DDM customer

Domain 4

Domain 1 Domain 2 Domain 3

Trusted Third Party

P

C

P

C

P

C

P
C

(d) Archetype IV

DDM customer

Domain 4

Domain 1 Domain 2 Domain 3

Trusted Third Party

P

C

P

C

P

C

P
C

(e) Archetype V

DDM customer

Domain 4

Domain 1 Domain 2 Domain 3

Trusted Third Party

P

C

P

C

P

C

P
C

(f) Archetype VI
DDM customer

Domain 4

Domain 1 Domain 2 Domain 3

Trusted Third Party

P

C

P

C

P

C

P

C

P

C

(g) Archetype VII

Figure 2.2: The collaboration archetypes in DL4LD.

14 Chapter 2. Select infrastructures with collaboration relationship modelling

Figure 2.3: An example application request from a potential DDM customer.

aggregated for a final result. Archetype IV, V and VI have similar patterns as
shown in Figure 2.2d, 2.2e and 2.2f, in which data objects and compute objects
are aggregated in a trusted third party execution platform. The data object from
each data object provider is processed in separate containers for an intermediate
result. The intermediate results are transferred to and merged at compute object
provider side for the final result. Archetype IV uses different compute objects to
process data objects from different data providers and the data objects are ac-
cessed via remote mounting. Archetype V executes the same compute object for
all data objects via remote mounting. Archetype VI also uses the same compute
object but the data objects are accessed via direct transfer. For archetype VII
illustrated in Figure 2.2g, the data objects and compute objects also meet in a
trusted third party and are merged separately. However, the intermediate results
are aggregated in a cascaded manner.

Each DDM may support one or more collaboration archetypes to allow po-
tential DDM customers to choose from.

2.2.2 Application request
A potential DDM customer may come with a concrete collaboration request and
seek a best-fitted collaboration archetype. We call such collaboration models
application requests. Application requests describe how the involving members
would like to share their assets in the specific data federation application. Nor-
mally application requests are included in the policy and highly dependent on the
trust relationships among involving members.

Figure 2.3 describes a concrete application request. Party A would like to
perform its algorithm on the data from Party B. However, Party A and B do
not trust each other, so they employ a trusted third party C and send their

2.3. Modelling of multi-party collaborations 15

compute and data to it. Party C executes A’s algorithm on B’s data and sends
the result back to A. A customer-defined application request may comprise both
hard requests and soft requests. Hard requests are not negotiable and must be
fulfilled in the collaboration process. However, soft requests could be adjusted to
fit any existing collaboration archetype better.

2.3 Modelling of multi-party collaborations
To manage and manipulate multi-party collaborations among participating mem-
bers, we should, in the first place, model them properly. In this chapter, we model
them with numeric representations because this would give us standard mathe-
matical tools to further reason about them. For example, we can measure the
similarity between an archetype and an application request by computing mutual
distance with those mathematical representations.

Firstly, a bilateral collaboration relationship can be fully described by four
attributes:

• Source is the resource provider;

• Target is the resource consumer;

• Collaboration level represents the concrete approach of resources exchange;

• Collaboration scope describes which resource could be shared between spe-
cific parties[9].

Collaborations among participating members may take place in multiple scopes,
data scope, algorithm scope and intermediate result scope. More scopes can be
added when necessary, e.g. geographical locations.

Also, the collaboration level captures important information about concrete
collaborating approaches of each scope between parties. Those features may in-
fluence the implementation and performance of underlying digital infrastructures.
Table 2.1 explains the concrete collaborating approaches represented by collab-
oration levels under each scope. These values are ordered and larger numbers
indicate a stronger collaboration, which implies more trust between source and
target parties.

In data scope, the collaboration levels indicate whether the data is accessed by
the target with directly data transfer or remote file system mounting. In algorithm
scope, partial algorithm means that source only shares the necessary part of its
algorithm, dedicated to individual partners, to reduce information exposure. En-
tire algorithm means that the total algorithm is shared for all distributed partners
and this certainly requires more trust from source to target. In intermediate result
scope, collaboration levels represent whether the intermediate result is aggregated
in a parallel or a cascaded manner.

16 Chapter 2. Select infrastructures with collaboration relationship modelling

Table 2.1: Collaboration levels under individual scopes.

Collaboration levels Data Scope Algorithm Scope Intermediate Result Scope
1 Remote Mounting Partial Algorithm Cascaded Aggregation
2 Direct transfer Entire Algorithm Parallel Aggregation

A bilateral collaboration relationship is represented as {source, target,scope1 :
level1 · · · , scopen : leveln}.

A multi-party collaboration relationship can be modeled as a labeled weighted
graph for each scope and represented as its corresponding adjacent matrix.

We denote the graph as G(V,E,W). The set of nodes V represent participat-
ing members. The edges set E represent bilateral collaboration relationships and
weights W represent corresponding collaboration levels. For example, wij is the
collaboration level from member i to member j. We also use labels to indicate
whether a bilateral collaboration relationship belongs to hard or soft requests
when modeling an application request.

As illustrated in Figure 2.4, a multi-party collaboration relationship among
multiple members is effectively modeled as a 3D matrix. Each 2D matrix along
the scope-axis is the adjacent matrix of a graph under a specific scope.

Scope

Source

Targe
t2 0 2

0 0 1
2 1 0

0 0 0 2 0

0 0 0 2 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Data

Algorithm

Results

Figure 2.4: Modeling of a multi-party collaboration relationship. On the left we
see the relations between sources and targets for the three scopes; on the right, we
zoom in on one specific scope, where the crossed-out cells represent hard requests.

2.4 Selection of collaboration archetypes in a
DDM

Each DDM may support multiple collaboration archetypes to meet individual ap-
plication requests. Furthermore, the requests may vary over applications and even
vary in time. Therefore it is highly beneficial to develop an algorithm to perform
the matching procedure from any incoming application request to a collaboration
archetype supported by DDM.

2.4. Selection of collaboration archetypes in a DDM 17

Distance Calculation

Filtered Archetype
Database

Original Archetype
Database

Full Requests

Hard Requests

Optimum Archetype

Filtering

Stage I Stage II

Figure 2.5: Flow chart of the archetype selection algorithm. Stage I is concerned
with filtering the archetypes based on hard requests, and Stage II calculating
distances to identify the optimal archetype.

We define similarity measures between collaboration models, effectively quan-
tified as a distance metric. A collaboration archetype or an application request
can be mapped as a point in a discrete space by calculating their mutual distances.

The algorithm aims to select a collaboration archetype which fully satisfies
hard requests from customers and best fits the soft requests. Here ”best fit”
means the highest similarity, described by the minimum distance to the input
application request.

2.4.1 Algorithm overview
The matching algorithm consists of filtering (Stage I) and archetype selection
(Stage II). Figure 2.5 describes the algorithm flowchart.

At Stage I, all collaboration archetypes from Original Archetype Database are
filtered with Hard Requests given by a potential customer. After Filtering, a
subset of archetypes is kept in Filtered Archetype Database for further processing
and the corresponding searching space shrinks. All the remaining archetypes are
acceptable by potential customers for compliance with Hard Requests.

At Stage II, we first calculate the distances between Full Application Request
and the remaining archetypes in Filtered Archetype Database. Then select the
optimal archetype as the one with minimum distance towards Full Application
Request.

The operational details of each stage are described in the remaining part of
this section.

2.4.2 Stage I: filtering with hard requests
An application request includes three scopes, as discussed in Section 2.3, and
we perform the filtering stage scope-wise. Suitability under one specific scope
does not necessarily mean a completely identical adjacent matrix. For example,

18 Chapter 2. Select infrastructures with collaboration relationship modelling

Figure 2.6: Stage I components performing the filtering.

start

D1 D2 D3 D4

A1 A2 A3 A4 A2

R1 R3 R2 R4R1 R3R3

I II III VIVVI VII

Data

Algorithm

Output

Figure 2.7: An example tree structure formed by the filtering mechanism.

if an application requires no third party, any matrix with all-zero entries in the
corresponding positions is qualified. The mechanism is illustrated in Figure 2.6.

Scope Priority depends on the ratio of hard request entries in each scope.
Higher priority is achieved for more non-negotiable request entries. A tree
structure is automatically generated with inputs of Scope Priority and Original
Archetype Database.

An example tree structure with Scope Priority [data, algorithm, output] is
shown in Figure 2.7. The path from start to a concrete collaboration archetype
consists of matrices under each scope and different archetypes may share the same
scope-level matrix. If the data scope matrix D1 does not satisfy the hard request,
all its children nodes are excluded from the search space.

2.4.3 Stage II: distance calculation and archetype selec-
tion

We should define a distance calculation method that effectively measures the
dissimilarities among collaboration models. For example, a smaller distance is
expected for two collaboration models that are intuitively more similar.

What do we mean by similarities among collaboration models? Firstly, multi-

2.4. Selection of collaboration archetypes in a DDM 19

party collaborations are more similar if more bilateral collaboration relationships
are equivalent. Secondly, two bilateral collaboration relationships are more similar
if they are identical in more scopes. Thirdly, the existence of a collaboration
between parties weights more in our similarity assessment than the level to which
they collaborate. The distance calculation method is illustrated in Figure 2.8.

Figure 2.8: Stage II components performing the distance calculation for individual
collaboration archetypes.

Firstly, we pre-process both Application Request and Collaboration Archetype
for more commensurate comparison. In Pre-processing module, we adjust the
dimension of collaboration archetypes in the database to the dimension of the
input application request, which is equal to the number of involved parties. Also,
we extract all non-zero vectors along the scope axis, each of which represents
a bilateral collaboration relationship. We call such vectors bilateral relationship
vector and each vector can be denoted as {source, target,(level1, level2, level3)}.
Also, source and target in the bilateral relationship vector are represented as the
roles of involved parties instead of concrete matrix indexes. The purpose is to
eliminate the influences of how those members are positioned into a collaboration
matrix to represent their application requests. Those bilateral relationship vectors
from both application request and collaboration archetype are passed from Pre-
processing module to the next.

In the Weighted Hamming Distance module, we calculate weighted Ham-
ming distances between pairs of bilateral relationship vectors with equivalent
{source, target} [10].

The distance between two collaboration models is achieved by summing up all
the individual Hamming distances generated from Weighted Hamming Distance
module. This is performed in the module Factor Summation and the mathematics
equation 2.1 is

D(CMi,CMj) =
P −1∑
s=0

P −1∑
t=0

S−1∑
k=0

wk[level(i)s,t,k ̸= level(j)s,t,k] (2.1)

, where CMi denotes ith collaboration model. It can be either a customer-defined
application request or a collaboration archetype supported by a DDM. P , S
denote the number of involved parties and number of defined scopes respectively.

20 Chapter 2. Select infrastructures with collaboration relationship modelling

level(i)s,t,k denotes the collaboration level from source s to target t at kth scope
in collaboration model i. wk is the weight of Hamming distance, which is jointly
decided by scope priority and collaboration entries.

As discussed previously, the source or target are represented as roles of mem-
bers rather than index. So there may be multiple bilateral relationship vectors
with same {source, target}. The distance is the minimum value of all results
computed from all bilateral relationship vector combinations between two collab-
oration models. We aim to find an optimum archetype for a concrete application
request by considering all possible arrangements of members when they put them-
selves into the matrix to represent their application request.

2.5 Evaluation metrics of a DDM
As discussed in the previous sections, application requests can be matched into
most similar collaboration archetypes in a DDM.

For DDM customers, it is interesting to know a-priori how easily one of their
application requests can be fulfilled by a particular DDM; for DDM providers it
is essential to assess how well they can serve their user base generally.

Suppose that two DDMs all support an equal number of archetypes. They
may performance differently according to particular customer-defined application
requests or mutual distances among archetypes in the discrete space. For example,
if all archetypes of a DDM are concentrated in a small area, it might have less
capability to fulfill overall application requests than a DDM whose archetypes
are sparsely distributed. We propose multiple metrics that allow a more nearly
complete evaluation of a DDM:

• Coverage: How well the overall application requests can be satisfied by a
DDM with a certain mismatch.

• DDM Extensibility: What is the potential richness of a DDM by decompos-
ing and composing collaboration archetypes.

• Application Extensibility: How elastic an application request is for achieving
a perfect match with a given DDM.

• Precision: How well the supported collaboration archetypes of a DDM fit
an application request.

• Flexibility: How easily an application request can be satisfied generally.

Metrics like coverage and DDM extensibility are not related to individual re-
quests but represent a general feature of a DDM. However, precision, flexibility
and application extensibility depend on both concrete customer-defined applica-
tion requests and DDM itself.

2.5. Evaluation metrics of a DDM 21

Besides conceptual definitions, we also define quantization methods for each
metric, which we will introduce in detail.

2.5.1 Coverage
With metric coverage, we can assess how well the overall application requests
can be satisfied by the archetypes of a given DDM. It is intuitively clear that
coverage highly depends on how we define customer satisfaction. In our work,
a DDM customer is considered satisfied if the distance between her application
request and the optimum archetype, is not larger than a pre-defined value. We
call the parameter affordable distance and denote it as DA.

First, we try to identify the number of overall application requests. Suppose a
DDM supports collaboration archetypes A = {A1,A2, · · · ,An}. Let P , S, and C
denote the number of participating parties, number of defined scopes, and number
of collaboration levels respectively. Since the diagonal elements are invalid in
a collaboration matrix, the number of entries containing effective collaboration
information NE is

NE = (P 2−P)∗S (2.2)

Theoretically, the total number of possible collaboration models with fixed P ,
S and C is

NT = CNE (2.3)

In reality, this number of feasible collaboration models is much smaller. On the
one hand, not all collaboration matrices describe a valid collaboration model. On
the other hand, multiple mathematically different collaboration matrices might
represent the same collaboration model due to symmetry. We will develop a
feasibility validation model in future work.

As illustrated in Figure 2.9, the covered area of ith archetype Ai is modeled
as a sphere with radius of the affordable distance DA. The total covered area of
multiple collaboration archetypes is the union of individual covered areas.

Ultimately, coverage is quantified as the percentage of the application requests
that fall into the covered area of supported archetypes, over the total number of
overall collaboration models.

coverage = Ncovered
NT

(2.4)

, where Ncovered denotes the number of application requests that fall into total
covered area of the DDM.

Coverage is calculated by computing the distances between all possible ap-
plication requests and supported archetypes. However, this leads to a heavy
computational burden and the complexity grows exponentially with larger C and
P .

22 Chapter 2. Select infrastructures with collaboration relationship modelling

Figure 2.9: Illustration of coverage in discrete space, with archetypes identified as
crosses, application requests as dots, and covered areas represented by the yellow
circles.

We develop an optimization algorithm to reduce computation complexity. The
general principle is to exclude those application requests that fall outside the
covered areas before simulation.

Described in algorithm 2.1, Nnz,A is the number of non-zero entries in the
collaboration matrix of a supported archetype and wh is the maximum weight
of Hamming distance in equation 2.1. We sort overall application requests with
the number of non-zero entries in their collaboration matrices and ARi is the set
of application requests with i non-zero entries. ARcovered,i denotes number of
covered application requests in ARi.

For instance, if there are four and seven non-zero entries in an archetype
matrix and an application request matrix respectively, then at least three entries
are not overlapped and contribute to a distance of 3∗wh. So there is a limit for the
number of non-zero entries in the application request matrix to achieve a distance
smaller than DA. This maximum number of non-zero values Nnz,max is calculated
from line 2 to 6 in Algorithm 2.1. Next, the algorithm deals with each ARi with
an increasing number of nonzero entries i and computes a ARcovered,i. When i is
larger than Nnz,A, there are also limitations about how these entries distribute in
the collaboration matrix and the number of iterations could be further reduced
as indicated in lines 11 and 12.

2.5.2 DDM extensibility
DDM extensibility measures the potential richness of a DDM by recombining
collaboration archetypes.

Each archetype can be decomposed into multiple basic blocks. Each basic
block describes collaborations among two or three parties of the same trust do-
main called primitives. Different collaboration archetypes may share the same
primitives. The primitive set of a DDM is the union of primitives of its support-

2.5. Evaluation metrics of a DDM 23

Algorithm 2.1 Optimization algorithm for coverage calculation
1: Input DA, Nnz,A and wh

2: if DA is even then
3: Nnz,max = DA

wh
+Nnz,A

4: else
5: Nnz,max = DA+1

wh
+Nnz,A

6: end if
7: for ARi ∈ {AR0,AR1, · · · ,ARN} do
8: if i≤Nnz,A then
9: compute ARcovered,i by iterating all request ∈ ARi

10: else
11: reduce ARi→ ARre,i by restricting matrix deployment
12: compute ARcovered,i by iterating all requests ∈ ARre,i

13: end if
14: ARcovered = ARcovered +ARcovered,i

15: end for

ing collaboration archetypes.
Suppose the primitive set of a DDM is P = {Pl|l = 1,2, · · · ,N} and a new

collaboration archetype can be constructed as

A = r1P1 + r2P2 · · ·+ rN PN =
N∑

l=1
rlPl (2.5)

, where ri denotes the number of repeating times of each primitive.
DDM extensibility is a measure of the ability to enrich DDM by archetype

recombination. It can be measured as

DDM Extensibility = 1− NA,o

NA,e
(2.6)

where NA,o denotes the number of original archetypes of a DDM and NA,e denotes
the number of possible archetypes with the primitive combination.

2.5.3 Application extensibility
Application extensibility describes the elasticity of an individual application re-
quest in achieving a perfect match towards a given DDM. It is quantified as the
percentage of unmodified soft entries over all the soft entries in the collabora-
tion matrix. We set the metric as −∞ if a zero distance is not reachable with
this DDM by adjusting soft entries in the application. Application extensibility is
calculated as

App extensibility = 1− Nm,soft

Nsoft
(2.7)

24 Chapter 2. Select infrastructures with collaboration relationship modelling

, where Nsoft denotes the number of soft entries in a collaboration matrix and
Nm,soft denotes the number of modified soft entries for a perfect match. This
metric is related to flexibility in Section 2.5.5 . This metric is conditional and is
only valid when there are soft requests in the application request.

2.5.4 Precision
Precision describes how well the supported archetypes of a DDM match a specific
application request of potential customers. This metric is calculated as

precision = 1−Dmin
DA

(2.8)

Dmin = min(Distance(AR,Ai)) (2.9)

, where Dmin denotes the distance between an application request AR and the
optimum archetype in the DDM, DA is aforementioned affordable distance.

If a perfectly matched archetype exists in a given DDM with Dmin = 0, preci-
sion regarding to the application request is 1. If Dmin is exactly DA, the precision
turns out to be 0. Otherwise if Dmin is significantly larger than DA, precision
results in a negative value.

2.5.5 Flexibility
The metric flexibility measures the strictness of an application request. It is
quantified as

Flexibility = 1− Nh

NE
(2.10)

, where Nh denotes the number of hard request entries in a collaboration matrix,
NE denotes the number of entries containing efficient information, which can be
calculated by equation 2.2.

2.5.6 Intelligent selection algorithm
With the values of proposed metrics for each DDM, the customer will get infor-
mation about which DDM meets his or her application request best.

Algorithm 2.2 explains the concrete procedure of metric analysis. It aims to
select the ’best’ DDM who can provide a perfect matched collaboration archetype
for the application request with minimum modification effort and relatively higher
coverage.

First of all, the algorithm sorts all DDMs on coverage in a descending order
to ensure that the winner always has the highest coverage among the qualified
members.

2.5. Evaluation metrics of a DDM 25

In the first step, it analyzes precision, described from lines 3 to 8, to check if
any DDM can provide a perfectly matched collaboration archetype without any
modification. If so, it selects this DDM and ends the procedure.

In the second step, the algorithm checks which DDM can provide an exactly
matched archetype by only extending the application request. This is done by
analyzing metrics of flexibility and Application Extensibility. Line 9 checks if
there are any soft requests in this application request. Line 10 checks whether
the distance can be shortened to zero by just soft request adjustments. If so,
the DDM with minimum modification of application request, a minimum value
of Application Extensibility, is selected.

Finally, the algorithm enriches the DDM candidate pool by archetype recom-
bination and checks whether a DDM in the enriched pool can fully satisfy the
application request. They are indicated from lines 16 to 22.

Algorithm 2.2 Intelligent selection algorithm with a specific application request
1: Input application request → AR
2: Sort DDMs with coverage in descending order →DDMrank
3: for DDMi ∈DDMrank do
4: if precision(DDMi, AR) = 1 then
5: DDMi→DDMopt
6: go to output
7: end if
8: end for
9: if flexibility(AR) > 0 then

10: if ∃ app extensibility ≥ 0 then
11: Select DDMi with maximum app extensibility
12: DDMi→DDMopt
13: go to output
14: end if
15: end if
16: Extend DDMrank by primitive composition →DDMe
17: for DDMi ∈DDMe do
18: if precision(DDMi, AR) = 1 then
19: DDMi→DDMopt
20: go to output
21: end if
22: end for
23: output:
24: Return DDMopt

26 Chapter 2. Select infrastructures with collaboration relationship modelling

2.6 Performance evaluation and results analysis
In this section, we evaluate the effectiveness of the metrics with the data logistic
use case and DL4LD archetypes we described in section 2.2.

2.6.1 Spatial distribution and mutual distances
We first investigate the spatial distribution of all seven DL4LD archetypes.

We computed the pair-wise mutual distances among all the archetypes. The
corresponding results with four parties are shown in Table 2.2. The resulting
matrix is upper-triangular because of the symmetry property of distances in space.

Table 2.2: Mutual distances between DL4LD archetypes.

I II III IV V VI VII

I 0 10 12 12 12 12 12
II - 0 14 5 4 2 4
III - - 0 16 16 16 16
IV - - - 0 1 3 2
V - - - - 0 2 1
VI - - - - - 0 3
VII - - - - - - 0

According to these relative distances, we can visualize the spatial distribution
of those archetypes. As illustrated in Figure 2.10, archetypes I and III are more
isolated with others and archetype II, IV, V, VI, and VII are clustered together.
This computation result is in accordance with the similarity between archetypes.

2.6.2 Metrics evaluation from DDM provider perspective
In this section, we evaluate DDMs, who support different archetype sets by com-
puting and analyzing coverage and DDM extensibility.

We assign the total seven archetypes into various subsets and suppose each of
them is supported by an individual DDM. The number of all possible archetype
combinations with a particular set size is shown in Table 2.3. We will compute
coverage and DDM extensibility of all those individual DDMs.

Figure 2.11 shows the coverage of each archetype with affordable distance
DA = 6 and DA = 4. Every archetype may have different capabilities to serve the
overall request space with an identical pre-defined covered area. Archetype III
has the highest coverage, which implies a higher density of feasible application

2.6. Performance evaluation and results analysis 27

Figure 2.10: Spatial distribution of archetype collaboration models.

Table 2.3: The number of possible archetype combinations with increasing set
size.

Archetype Set Size 1 2 3 4 5 6 7
Number of Subsets 7 21 35 35 21 7 1

requests in its neighboring space. Also, the value of reasonable distance DA plays
an important role in coverage.

I II III IV V VI VII
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
ve

ra
ge

1e−12
D_a =6
D_a =4

Figure 2.11: Individual coverage of each archetype, with DA = 4 and DA = 6
respectively.

28 Chapter 2. Select infrastructures with collaboration relationship modelling

A DDM provider may get complete information about its supported
archetypes by computing and analysing metric coverage. For instance, the DDM
provider may expect that implementing archetype III and corresponding infras-
tructures is more beneficial for the ability to meet overall collaboration requests.

More generally, coverage of all other archetype sets are computed with op-
timisation algorithm discussed in Section 2.4. The corresponding computation
results are illustrated in Figure 2.12.

1 2 3 4 5 6 7
Supported Archet pe Set Size

0

1

2

3

4

5

Co
ve

ra
ge

 o
f D

M
Ps

1e−12
D_a =6
D_a =4

Figure 2.12: Coverage as a function of increasing archetype set size with DA = 4
and DA = 6 respectively.

In Figure 2.12, each group represents coverage of DDMs supporting archetype
sets with equal size. It is not surprising that coverage increases approximately in
a linear manner with a larger archetype set size. If a DDM provider implements
and supports more collaboration archetypes, it certainly has a higher possibility
of satisfying more requests. However, it is usually more expensive.

By analyzing data of proposed metrics, a DDM provider may find a bet-
ter solution between implementation cost and achieved coverage. As shown in
Figure 2.12, most inter-quartile range boxes have overlap values with their neigh-
bors. This indicates that a DDM provider, which supports a larger number of
archetypes, may result in a relatively lower coverage. One DDM provider or cus-
tomer may beneficially select a specific archetype set that has higher coverage
but lower archetype size.

Similar with coverage, DDM extensibility is also an evaluation metric de-
fined from DDM provider perspective and independent of particular collabora-
tion requests. It represents the richness a DDM can achieve by constructing
new archetypes by primitive composition. In some scenarios, a DDM with lower
coverage may have higher DDM extensibility.

2.6. Performance evaluation and results analysis 29

Figure 2.13 shows statistic information about the values of DDM extensi-
bility in DL4LD. DDM extensibility increases non-linearly with more supported
archetypes. The mean value increases faster when the supported archetype size
grows from 1 to 4 and becomes relatively stable after the number reaches 5. The
standard deviation of DDM extensibility for DDMs with equal archetype set size
is very small. It is because every archetype in DL4LD has only one primitive.

(a) Mean value of DDM extensibility for DDMs with
equal archetype set size.

(b) Standard deviation of DDM extensibility for
DDMs with equal archetype set size.

Figure 2.13: DDM extensibility as a function of archetype set size.

For DDM extensibility, it may be more interested to investigate how coverage
or precision would increase after DDM extension. We would discuss some of them
in next Section.

30 Chapter 2. Select infrastructures with collaboration relationship modelling

2.6.3 Intelligent selection of DDMs
This section evaluates multiple DDMs in data logistic use case by computing all
the five metrics with two concrete application requests of the airline use case. An
optimum DDM is selected for each scenario by analyzing those metrics intelli-
gently with Algorithm 2.2.

Two scenarios describe collaboration among Airline Companies. The involved
parties are KLM, AirFrance, and Dell.

(a) Scenario A (b) Scenario B

Figure 2.14: Two example application requests for a digital collaboration of airline
companies in DL4LD.

Scenario A is illustrated in Figure 2.14a, both AirFrance and KLM trust Dell
in data scope and provide their aircraft data to it. Dell aggregates the data and
performs its AI algorithm on it. However, KLM prefers sharing its data only by
a remote mounting and AirFrance allows the direct transfer, both of which are
negotiable and belong to soft requests of this application.

Scenario B is more complicated and is described in Figure 2.14b. One data
provider AirFrance does not trust Dell in data scope but Dell trusts it in algo-
rithm scope. Dell first sends its AI algorithm to AirFrance, who would send the
intermediate result back after operating on its local data. Another data provider
KLM and Dell do not trust each other and agreed to use Amazon as a trusted
third party to perform the computation and the intermediate result is also sent
back to Dell. Finally, Dell can merge the intermediate results from both sides
and offer a prediction result. All the asset sharing is through direct transfer, and
no soft requests involve in this collaboration.

Now we show a concrete example of how to choose a suitable DDM with spe-
cific application requests among competing DDMs with the algorithm explained
in Section 2.5.6. The application requests are described in detail as scenarios A
and B and available DDMs are shown in Table 2.4. The table describes each
DDM with its supported archetype set.

2.6. Performance evaluation and results analysis 31

Table 2.4: Available DDMs and its supported archetypes defined in DL4LD.

DDM Supported Collaboration Archetypes
DDM1 I, II, III, IV, VII
DDM2 I, II, III, V, VII
DDM3 I, II, III, V, VI
DDM4 I, III, IV, V, VII
DDM5 II, III, IV, VI, VII

Table 2.5 shows the proposed metrics of all DDMs for application request A.
Rank those DDMs with coverage in descending order and no DDM achieves a full
precision. Existence of soft requests contributes to a non-zero flexibility, which
is a pre-condition for calculating application extensibility. A positive application
extensibility indicates that a perfect matched archetype can be provided by the
DDM by modifying the application. Finally, DDM1 is selected as optimum for
this specific scenario.

Table 2.5: Metrics evaluation of various DDMs for scenario A.

DDM1 DDM2 DDM3 DDM4 DDM5

Coverage (1e−12) 4.29 4.28 4.26 3.69 3.65
Precision 0.83 0.83 0.83 0.83 -0.67
Flexibility 0.06 0.06 0.06 0.06 0.06
App extensibility 0.5 0.5 0.5 0.5 −∞

Table 2.6: Metrics evaluation of various DDMs for scenario B.

DDM1 DDM2 DDM3 DDM4 DDM5

Coverage (1e−12) 4.29 4.28 4.26 3.69 3.65
Precision 0 0.17 0.33 0.17 0.33
Flexibility 0 0 0 0 0
App extensibility – – – – –
Exact match after extension F F T F T

The computed metrics of application request B for all available DDMs are
shown in Table 2.6. Based on the value of precision, the fitness from those five
DDMs to application request B is much lower than that of A. Since there is no

32 Chapter 2. Select infrastructures with collaboration relationship modelling

soft requests, flexibility = 0. Consequently, metric application extensibility is
invalid under this scenario. Then we further explore whether a perfect match
can be achieved by archetype recombination. According to the last row in Table
2.6, DDM3 is selected as optimum for the ability to offer an exact match and
relatively higher coverage.

2.7 Related work

DDMs are found in the literature to primarily describe specific online platforms
that enable transactions among participating parties[11]. A very well known
example is Airbnb [12], which is focused on putting peers, i.e. homeowners and
short term renters, in contact. Business to business (B2B) platforms also relies
on DDMs to create additional value for participating parties[13][14].

The typical approach to a DDM is that of a platform whereby the DDM
provider becomes a trusted party[15]. This model entails that data and algorithms
have to move to a secure trusted location provided by the provider. Our model
of a DDM is a distributed model where autonomous parties build trust relations
between them and move data and algorithms accordingly.

[16] defines DDM as a platform coordinating the supply and demand of dig-
ital products, a collection of data containing specific information among DDM
providers and customers. They define a distributed business process model and
corresponding supported P2P based network [17]. But no work is involved in
linking digital agreement with digital infrastructures.

Our work is generically focused on modeling collaborations in DDMs and
defining fundamental building blocks in such architectures. This is the first com-
prehensive step, to the best of our knowledge, towards a systematic description
of DDMs.

Toward this general definition of DDMs, we built upon concepts that have
been explored before, also in our research group. The two main concepts we
adopt are trust and derived from trust policies.

[18] has been the first to identify the need for a thorough and comprehensive
definition of trust among participants in the marketplace. They also saw trust
as the starting point for the whole chain of resource and services authorization
among parties. Subsequent work has further elaborated this concept, as we can
see in [19]. We use this idea of trust as the underlying mechanism that allows us
to model collaboration across scopes.

Trust is indeed the starting element in creating actionable policies. Policy-
driven systems are well known in the literature [20][21]. In the work we presented
here, we do not cover the implementation choices needed to translate the collabo-
ration models into actual components, software and hardware, in the DDM. This
is the focus of ongoing work.

2.8. Conclusions and future work 33

2.8 Conclusions and future work
This chapter presented how we map a policy driven application into a best-match
infrastructure pattern according to compatibility. The requested multi-lateral col-
laboration relationships and the provided infrastructure patterns are illustrated
with archetypes. We modelled the archetypes, which are previously graphically
represented, with 3D matrices for easier manipulation and reasoning. With the
consistent numeric representations, we can identify the closeness of the collabo-
ration request and the offered infrastructure by defining a proper similarity mea-
surement metric, the Hamming distance. We also showed that the evaluation
and comparison of competing DDM infrastructures are allowed and supported
by having generic metrics, namely coverage, extensibility, precision and flexibil-
ity. We applied our model and metrics to a specific use case to demonstrate how
these methodologies are applied in the real world.

Beyond the match between collaboration requests and the supported patterns
of digital infrastructures, we also need to consider the security aspect. Chapter
3 describes how we quantitatively assess the remaining risk of a specific policy-
driven data exchange application and allow DDM customers to select a digital
infrastructure with minimum risk.

Chapter 3
Risk assessment framework

Security is a top concern for data exchange applications, and there is a basic
need to assess the level of security guaranteed by the digital infrastructures for
any application. Different applications may have different vulnerabilities and
different infrastructures are equipped with security countermeasures. In Chapter
2, we answered RQ1 by introducing how to select infrastructures with best-fit
collaboration patterns. In this chapter, to answer our RQ2, we propose a risk
assessment system that allows to rank infrastructures in terms of security for a
specific application. The system identifies threats of an application workflow,
computes the severity weights with the modified Microsoft STRIDE/DREAD
model [22] and estimates the final risk exposure after applying security counter-
measures in the available digital infrastructures. We also conducted a detailed
threat analysis for typical DL4LD data exchange applications. We additionally
present a method to validate the stability and resolution of our ranking system
with respect to subjective choices of the DREAD model threat rating parameters.

This chapter is based on:

• Lu Zhang, Arie Taal, Reginald Cushing, Cees de Laat, and Paola
Grosso. “A risk-level assessment system based on the STRIDE/-
DREAD model for digital data marketplaces.” International Journal
of Information Security 21, no. 3 (2022): 509-525.

3.1 Introduction
The DDM customers delegate their applications to a DDM infrastructure for
better security and sovereignty. Therefore, it is a basic necessity for any DDM
customer to estimate the guaranteed security level of such digital infrastructures.

35

36 Chapter 3. Risk assessment framework

We propose a system to assess the remaining after applying security countermea-
sures to existing infrastructure to solve this problem. The evaluation results can
be used to rank available DDM infrastructures regarding guaranteed security. We
proposed a risk assessment system that identifies threats semi-automatically by
splitting the input application into transaction lists, assigns severity weights of
each threat with the Microsoft STRIDE/DREAD model, and estimates the fi-
nal risk exposure after applying security countermeasures in the available digital
infrastructures.

The Microsoft STRIDE/DREAD model applies risk attributes, e.g. Damage
and Affected Users, to measure the likelihood and impact of exploiting a vulnera-
bility. Most recent work uses the STRIDE/DREAD model to rank threats based
on their severities [23, 24, 25]. However, we adopt the model to compute the
relative importance of each threat [22]. We also propose the new risk attributes
for the DREAD model to fit the context of DDM infrastructures and define more
fine-grained definitions of these attributes and their corresponding levels in our
system to gain more objective assessment results. We additionally present a
method to validate the stability and resolution of our ranking system with re-
spect to subjective choices of the DREAD model threat rating parameters. The
numerical values of risk attributes assigned to threats cannot be constant values
during the life span of the system applying the model. Also, the choice of nu-
meric values is not sufficiently objective. It is therefore important to analyse the
stability and sensitivity of the STRIDE/DREAD model due to subjective choices
of parameters in a real world use case. To quantify the robustness of our system
for different values of risk parameters, we use three metrics: two well-known,
Normalised Mean Square Error (NMSE) and Kendall’s Tau and one we define
ourselves, Granularity [26, 27]. The metric Granularity provides us insights into
the resolution. Our experimental results show that our risk assessment method-
ology is stable to subjective choices of the risk parameters and able to provide
sufficient resolution to discriminate the severity of real world threats in general.
Additionally, we observe that methodology performance is highly dependent on
the application scenarios and corresponding threat databases.

The rest of the chapter is organised as follows. Section 3.2 describes the system
framework from a high level perspective. Section 3.3, 3.4 and 3.5 introduce the
concrete methodologies we adopt in the 3 modules respectively in our proposed
risk assessment system. Section 3.6 presents how we define metrics to measure
the framework stability due to subjective choices of parameters. Section 3.7 and
Section 3.8 describe and analyse the experimental results. Section 3.9 presents
how our proposed risk assessment system compares with others in the related
field. Section 3.10 discusses the conclusions and possible future directions.

3.2. System architecture 37

3.2 System architecture
A Digital Data Marketplace (DDM) is a digital infrastructure that facilitates se-
cure data exchange and federation. For instance, different DDM parties may want
to gather their local data together and run a machine learning algorithm on their
joint data to gain benefits from a more accurate prediction model. In the DDM
community, there might be multiple DDM infrastructures with well implemented
security countermeasures and devices. DDM customers delegate their data feder-
ation applications to one of the DDMs for better security governance. Currently,
there are two primary typical DDM applications. One is training disease diagno-
sis models in the health care field; another is to predict aeroplane maintenance
necessity for airline companies.

Different data exchange applications suffer from different vulnerabilities. Like-
wise, different DDM infrastructure providers apply varying sets of security coun-
termeasures. When deploying an application, these varying threats and counter-
measures contribute to different final risk levels depending on the DDM it runs in.
Our risk assessment system is designed collaboratively to increase transparency
and boost the trust of DDM customers in DDM providers.

Figure 3.1: The architecture of our application-based risk assessment system.

The risk assessment is performed by a broker, who is essentially a trusted

38 Chapter 3. Risk assessment framework

thrid party and closely cooperating with DDM customers and providers. The
system estimates the risk level of all DDMs with respect to an application and
provides a ranking of these DDMs to a DDM customer.

Figure 3.1 shows the architecture of the system. A collaboration of DDM
customers first feed their applications, which is actually a list of transactions,
into the risk assessment system. Module I identifies corresponding threats of the
input application automatically by using a pre-constructed Threat Database. The
Threat Database is constructed a-priori by identifying a wide range of threats
for typical data exchange applications in DDMs. The Threat Database can be
updated during the run time of the system, because new threats may occur and
some existing threats may become obsolete. The list of identified threats is sent to
the DDM customer and each collaborating party checks this threat list. They sign
the list if they agree, or go into a negotiation phase if they disagree. Only with
all the signatures from the collaborating parties, module II of the risk assessment
system will process the approved threat list.

Module II estimates the risk level of each threat in the list with the modified
STRIDE/DREAD model from Microsoft [22]. This model considers the possibil-
ity of an attack occurrence using 5 risk attributes and also the impact of each
threat regarding the concrete application. DDM customers also provide impact
factors and object sensitivity as inputs to module II. The impact factors reflect
how the DDM customer perceives the influence of certain threats on their ap-
plication. The object sensitivity reflects the sensitivity of the shared data of the
application perceived by the DDM customer.

Module III matches the threats with corresponding security countermeasures
provided by individual DDM providers. This module determines the risk reduc-
tion level of each threat provided by different DDMs and calculates the total
remaining risk to this application. Finally, this module provides the DDM rank-
ings back to the DDM customers.

3.3 Module I: Application-oriented threat iden-
tification

3.3.1 Mapping between Microsoft STRIDE model and se-
curity features

The STRIDE model is a threat modelling tool developed by Microsoft for
analysing security flaws for cyber-security systems [22]. It groups threats into
six categories: Spoofing (S), Tampering (T), Repudiation (R), Information dis-
closure (I), Denial of service (D), Elevation of privilege (E) [22]. All the identified
threats for a data-exchange application belong to at least one of these categories.

We define a mapping of the threat categories in the STRIDE model onto

3.3. Module I: Application-oriented threat identification 39

Figure 3.2: Correspondence between the threat categories in the STRIDE model
(left) and the security features (right).

more generally understood security features, see Figure 3.2 [28]. So it is more
intuitive and comfortable for the DDM customers to consider the impacts of each
threat category for their applications. In this way, the DDM customer does not
need to have background knowledge of the STRIDE model. A threat may have
distinct risks for different applications because applications may have various
security goals. For example, the threats belonging to the category of Information
Disclosure damage the confidentiality of the shared data rather than integrity.

3.3.2 Applications of DDM-governed data exchange
As illustrated in Figure 3.1, DDM customers provide their application to the risk
assessment system. In the DDM infrastructure, it is normal to use transaction
lists to represent a data federation application. In this module, the input DDM
application is split into multiple transactions. An example transaction list is
shown below, with DO, CO, IR, DP, CP representing data objects, compute ob-
jects, intermediate results, data providers, compute object providers respectively.

Transactions of an example DDM data federation application
Trans 1: Trusted third party accesses DO from DP via remote mounting
Trans 2: Trusted third party accesses CO from CP via direct transfer
Trans 3: Trusted third party processes CO on DO with feature multi-tenancy, generating IR
Trans 4: CP accesses IR via direct transfer
Trans 5: CP processes on a trusted third party

We characterise each transaction as an attribute tuple:
⟨stage, source, target, object, feature⟩

40 Chapter 3. Risk assessment framework

Source and target are DDM parties. Feature describes important aspects for
threat identification. Direct transfer and remote mounting are two features for a
transaction with stage transmission. For instance, the attribute tuple of trans 1
becomes:
⟨transmission, DP, Trustedthirdparty, DO, remotemounting⟩.

Object sensitivity

The risk assessment system requires object sensitivity. It determines the potential
damage of a threat. The object sensitivity depends on an individual application.
For example, data objects in health-care applications usually are more sensitive
than others because they may contain private information of patients.

Impact factors

Due to the concrete security goal of an application, the impact of each threat
category in the STRIDE model varies. The DDM customers are required to
assign impact factors for each threat category based on its corresponding security
feature. According to the work in [29], there are 5 levels, which are critical (1),
high (0.75), medium (0.5), low (0.25) and none (0), to scale the impact factor.
The impact factor indicates the degree of concern of DDM customers about each
threat category. A DDM customer supplying the impact factor critical asks for
the greatest concern and priority for a specific threat, and with impact factor
none, the DDM customer has no concern about a given threat.

3.3.3 Threat modelling
Here we introduce a general methodology for identifying threats for applications
in DDMs. Every application can be split into a sequence of transactions, each of
which can be represented by a 5-tuple. The threats of each transaction can be
identified primarily based on its stage and feature. The threats of an application
are the union set of threats for all its transactions. In addition, DDMs, as dis-
tributed platforms for data federation applications, are based on virtualisation
technologies for better isolation. We consider common vulnerabilities of virtu-
alisation when modelling threats for a given application. For instance, threats
caused by the multi-tenancy feature [30].

We classify the threats of a DDM application into 3 stages. Stage I is data
in storage, and the main concern is confidentiality, availability, privacy of asset
objects in storage. Stage II is data in transmission, which is related to issues
such as end-to-end communication security. Stage III is data in execution, and
it focuses on whether the procession by an algorithm on the data complies with
the agreed policies.

3.4. Module II: Risk assessment of an individual threat 41

There are some threats mainly depending on the attribute stage of the trans-
action. For example, the threat of ‘data object leakage during end-to-end trans-
mission’ exists in nearly all transactions with stage of transmission. Attacks like
‘man-in-the-middle’ and ‘eavesdropping’ may exploit these threats. Similarly,
the threat of ‘malicious compute objects during execution’ is also common for
transactions with stage attribute of execution.

However, some threats are dependent on distinct features of a transaction. For
instance, mounting a local file may give a 3rd party sufficient permission to suffer
from the threat of data object tampering. The feature multi-tenancy indicates
data objects are processed individually in separate containers on the same physical
3rd party platform. An example threat for this feature is the ‘denial-of-service
attack’ by one of the malicious co-tenant containers.

According to the approach introduced before, we conduct threat modelling for
DDM applications semi-automatically according to a pre-defined dynamic threat
database.

Figure 3.3: A screenshot of a SQL threat database for a DDM use case.

Figure 3.3 shows the screenshot of a pre-constructed SQL Threat Database
for a DDM use case. Each a-priori identified threat has 9 different attributes,
namely, threatName, stage, category, archetype, DP, AC, SL, AU, ID.

The stage describes in which stage this threat occurs. The category refers
to the threat categories in the STRIDE model, as discussed in Section 3.3.1. It
indicates to which category this threat belongs. DP, AC, SL, AU, ID are assigned
values for the risk attributes for the given threat. The archetype describes the
collaborating relationships among DDM members and each application follows at
least one archetype [31]. The concrete archetypes were described in Chapter 2.

3.4 Module II: Risk assessment of an individual
threat

Once threats have been identified by the methodology described in section 3.3
and approved by all collaborating parties, this module computes the application-
dependent risk ratio of each threat with the modified Microsoft DREAD model.

42 Chapter 3. Risk assessment framework

The DREAD model is commonly used to rank individual threats based on their
severities. In module II, we adopt the concept of the DREAD model to compute
the relative importance of each threat according to the estimated risk level. Fur-
thermore, we redefine five risk attributes to fit the context of DDM applications
and increase objectivity in the assessment procedure.

3.4.1 Original DREAD model
The original DREAD part of the STRIDE/DREAD model proposed by Microsoft
is used to assess and rank threats in terms of their risk [22]. It defines 5 risk at-
tributes to estimate the probability of an exploitation of a vulnerability from
distinct aspects. These attributes are Damage (D), Reproducibility (R), Ex-
ploitability (E), Affected users (A), Discoverability (Di) [32].

• Damage (D): How much are the assets affected?

• Reproducibility (R): How easily the attack can be reproduced?

• Exploitability (E): How easily the attack can be launched?

• Affected users (A): What’s the number of affected users?

• Discoverability (Di): How easily the vulnerability can be found?

Each risk attribute is scaled into 3 qualitative levels as high, medium and low.
Due to the property of a concrete threat, one of the 3 qualitative levels can be
assigned for each risk attribute. All the five aspects need to be considered to
assess the risk of a threat. The threat risk ranges from 0 to 10 and the DREAD
model uses 3 integers 0, 5, 10, to represent the 3 corresponding levels numerically.
In the STRIDE/DREAD model, we represent a threat by the following 5-tuple
(Dti ,Rti ,Eti ,Ati ,Diti) with Dti ,Rti ,Eti , Ati , Diti ∈ {0,5,10} of numeric numbers.
The risk, represented as a metric called risk score rs(ti), is quantified as an average
of the numeric values of those five risk attributes:

rs(ti) = 1
5(Dti +Rti +Eti +Ati +Diti) (3.1)

According to the risk scores of the threats, the DREAD model can rank all
the threats regarding their risk.

However, the description of each risk parameter is obscure and there are no
concrete definitions of each level for the original DREAD model. This probably
increases the degree of subjectivity when assessing the risk level of a single threat
with the original DREAD model.

3.4. Module II: Risk assessment of an individual threat 43

3.4.2 Modified DREAD model for DDMs
We redefine five risk attributes and corresponding risk levels to better meet the
requirement of the DDM applications. For example, we address the importance
of monitoring and potential trust among collaborating parties in a DDM instance.
Table 3.1 shows the defined risk attributes and qualitative descriptions of 3 scaled
levels.

Table 3.1: Risk attributes of modified DREAD model and corresponding qualita-
tive descriptions of 3 levels.

Risk
At-
tributes

Damage
Potential
(DP)

Accessibility
(AC)

Skill
Level
(SL)

Affected
Users
(AU)

Intrusion
Detectabil-
ity (ID)

Low Low Data
Sensitivity

By collabo-
rating par-
ties

Advanced
skills

One party
member

Detectable
without moni-
toring

Medium Medium
Data Sensi-
tivity

By collabo-
rating par-
ties or any
trusted 3rd
party

Malware
existing
in In-
ternet
or using
attack
tools

Partial
party
members

Detectable by
monitoring

High High Data
Sensitivity

By out-
siders of
DDMs

Simple
tools

All party
members

Very hard to
detect even by
monitoring

Damage Potential (DP) describes the damage caused if a threat occurs. The
assets of DDM applications are data objects, compute objects and intermediate
results objects, which we have discussed in Section 3.3.2. The object sensitivity
assigned by the DDM customer determines the corresponding level of the risk
attribute Damage Potential (DP). For some threats like encryption key leakage
during exchange, the DP is always set as the highest level regardless of the objec-
tive sensitivity of the application. In Figure 3.3, we use ”TOP” to represent such
threats for attribute DP.

Accessibility (AC) describes who can perform attacks to exploit a threat. If
collaborating members of a DDM can only perform the attacks, the attribute is
scaled as low due to the mutual trust among them. If a 3rd party of an application
can also exploit the threat, i.e. more risk is included, AC is scaled as medium.
The highest risk occurs if one entity can perform this attack, including malicious

44 Chapter 3. Risk assessment framework

parties outside the DDM.
Skill Level (SL) defines what skills are needed to exploit this threat. The

probability is much lower if this exploitation requires complex programming or
hacker skills. The risk is highest, scaled as high, if it just requires simple tools or
even a web browser.

Affected Users (AU) is scaled into different levels according to how many
collaborating parties are affected if a threat occurs.

Intrusion Detectability (ID) describes how easy monitoring tools can detect
the exploitation of this threat. A threat is more severe if its exploitation is more
difficult to detect, which indicates a higher success rate of attacks and more
resulting damage.

Security experts can determine these risk attributes a-priori and reference
information can be found in some public vulnerability databases, for instance,
CAPEC [33]. Damage Potential (DP) and Affected Users (AU) are application-
dependent and subjective in nature. Currently, we use 0, 5, 10 to represent the 3
risk attribute levels numerically. We further discuss the influence of other numeric
representations on the stability and resolution of our methodology.

Integrating the application-dependent impact factors described in Section
3.3.2, we calculate the risk score rs(ti) of a threat ti as the product of a like-
lihood LH and an impact factor IF :

rs(ti) = LH(ti) · IF (ti) (3.2)

The likelihood LH(ti) and the impact factor IF (ti) are obtained as follows:

LH(ti) = 1
5(DPti +ACti +SLti +AUti + IDti), (3.3)

where DPti , ACti , SLti , AUti , IDti denote the numeric values of the five risk
attributes in Table 3.1 for threat ti, and IF (ti) equals to the impact factor of
the threat category in the STRIDE model that threat ti belongs to.

We must observe that the likelihood LH is a linear combination of the five risk
attributes. By the choice of a linear combination, Microsoft treats all attributes
equally.

According to Equation 3.3, we can compute the risk score of each threat for
the application, which represents the risk of each threat. A higher risk score
indicates a more dangerous threat for the concrete application.

To determine the relative importance, we define a risk ratio rr of each threat
ti in the threat list of the application. This is calculated as follows:

3.5. Module III: Risk mitigation and risk level evaluation 45

rr(ti) = rs(ti)∑
ti∈T rs(ti)

, with∑
ti∈T

rr(ti) = 1,
(3.4)

where rs(ti) denotes the risk score of threat ti, T denotes the threat list of the
application identified by module I.

3.5 Module III: Risk mitigation and risk level
evaluation

Module III of the risk assessment system matches security countermeasures to
identified threats for an application, computes the mitigation level of each threat
and calculates the total remaining risk of the application.

Figure 3.4: Functionality of module III. On the left side, we see the input of
module III, the identified threats of an application with corresponding risk ratios.
On the right side, we see the remaining risk of each threat after applying security
countermeasures by the DDMs. White areas indicate zero risk, coloured areas
indicate the remaining risk.

As illustrated in Figure 3.4, the input of module III is a list of threats with
corresponding risk ratios rr(ti). Those threats constitute the original 100% risk
of the application without any mitigation from DDMs and the proportion of
each threat is equal to its risk ratio calculated by Equation 3.4. According to
information of security countermeasures provided by DDMs, this module ranks
DDMs regarding total remaining risk for the application.

46 Chapter 3. Risk assessment framework

3.5.1 Security countermeasures matching and threat mit-
igation

As shown in Figure 3.1, DDM providers publish the CM Database, a database of
supporting security countermeasures. The risk assessment system accesses each
CM Database and matches suitable security countermeasures for each threat of
the application. Figure 3.5 illustrates the matching procedure. The module
checks both the feasibility and necessity of applying a security mechanism to
an application. Necessity indicates whether a security countermeasure can mit-
igate one or multiple threats identified for the application. Feasibility means
whether a security countermeasure can fit the data type or data volume of the
shared objects of the application. For instance, the watermarking techniques are
only applicable to data objects of images. In Figure 3.5, an arrow from cmj to
ti indicates countermeasure cmj is both feasible and necessary to apply to the
application to mitigate threat ti. The matching from security countermeasures
to threats can be one-to-one (1-1), one-to-multiple (1-N) or multiple to one (N-
1). A one-to-multiple mapping indicates a security countermeasure is capable to
mitigate multiple threats. A multiple-to-one mapping means multiple security
countermeasures apply to only one threat.

Figure 3.5: Threats mitigation by security countermeasures of each DDM
provider. This results into a mitigation list of original threats for each DDM.

Every DDMk applies a mitigation factor fm;k : CMk×T → [0,1] by multiply-
ing the rs(ti) of each ti ∈ T with fm;k(cmj , ti) for all cmj ∈CMk, if cmj does not
apply to threat ti, we define fm;k = 1, i.e. it leaves rs(ti) unchanged; if cmj can
fully mitigate threat ti, we define fm;k = 0.

3.5. Module III: Risk mitigation and risk level evaluation 47

The mitigation factor fm;k is a measurement for the reduction of likelihood
after applying a security countermeasure to a threat. For instance, it is much
more difficult to perform an eavesdropping attack after end-to-end encryption
than on plaintext. For a single threat, two factors influence the risk of a threat,
likelihood LH and impact factor IF , according to Equation 3.3. The impact stays
the same and the likelihood is reduced by fm;k(cmj , ti). That’s why fm;k(cmj , ti)
is serving as a scale factor of original threat risk score, subject to constraint
0≤ fm;k(cmj , ti)≤ 1.

Security countermeasures cmj ∈ CMk and identified threat ti jointly deter-
mine the value of fm;k(cmj , ti). In DDM applications, monitoring techniques
usually play a vital role to detect policy breaches. Hence we classify the se-
curity countermeasures into two categories, namely, prevention countermeasures
and detection countermeasures. Prevention countermeasures are those security
mechanisms aiming to stop an attack from occurring and prevent a policy breach,
e.g. data access control and cryptographic mechanisms. Detection countermea-
sures are those aiming to detect any attacks or policy breaches during the data
exchange procedures, e.g. system call monitoring. The mitigation factors in our
risk assessment system for countermeasures that apply to a threat are defined as:

fm;k(cmj , ti) =
{

0, if ti is prevented by cmj

Rd, if ti is detected by cmj

Rd denotes the real time detection rate of the applied monitoring technologies. Rd

is provided in the DDM countermeasure database offered by the DDM providers.
Normally, DDM providers can achieve the estimated detection rate from IDS
designers according to experimental evaluations. It is also possible for DDM
providers to adjust Rd of a concrete countermeasure based on the historical data
when apply to other DDMs.

For security countermeasures that prevent a threat, we assume the threat can
be adequately mitigated and set the value as 0. It is also possible to recalcu-
late risk attributes after applying the countermeasure according to Table 3.1 and
determine the corresponding fm;k(cmj , ti). For security countermeasures that de-
tect an intrusion, the mitigation factor is equal to the accuracy rate, denoted as
Rd, of the implemented monitoring detection and algorithm. The value of Rd is
typically gained with the historical data.

If multiple countermeasures are matched to a single threat, we need to con-
sider interactions and redundancy among those security countermeasures when
determining the joint mitigation level. The multiple security countermeasures are
chained and the joint mitigation factor is calculated as:

Fm;k(ti) =
Nk∏
j=1

fm;k(cmj , ti) (3.5)

Fm;k(ti) is the joint mitigation factor of threat ti, Fm;k(ti)∈ [0,1]. Nk denotes the

48 Chapter 3. Risk assessment framework

total number of security countermeasures for a threat ti in CMk and fm;k(cmj , ti)
denotes the mitigation factor of countermeasure cmj to threat ti.

3.5.2 Total risk level of an application
The remaining risk of a threat after mitigation by DDMk is computed as:

rrremain;k(ti) = rr(ti) ·Fm;k(ti) (3.6)

rrremain;k(ti) denotes the remaining risk of threat ti after applying security coun-
termeasures of DDMk; rr(ti) denotes the original risk ratio of threat ti.

The risk level RL of an application A provided by DDMk is calculated as the
summation of the remaining risk rrremain;k of all threats:

RL(A,DDMk) =
∑

ti∈T

rrremain;k(ti) (3.7)

Module III of the risk assessment system computes the risk levels for potential
DDM providers and provides the rankings to DDM customers.

3.6 System stability due to subjective choices
Most risk assessment systems suffer from the problem of being too subjective.
In this section, we investigate how the system ranking results fluctuate due to
the subjective choices of the parameters. We call this the stability of the risk
assessment system.

The subjective choices mainly occur in module II. As mentioned in Section 3.4,
the STRIDE/DREAD model maps the 3 qualitative levels of each risk attribute,
namely, low, medium, high, into 3 numeric values [0, 5, 10] with a bijective
function. A function f : X→ Y is bijective, if for all y ∈ Y , there is a unique x∈X
such that f(x) = y. The numeric combination of [0, 5, 10] indicates an equal risk
increase between adjacent qualitative levels for all risk attributes, which fits the
majority of risk assessment scenarios. However, it is also possible and reasonable
to adopt other numeric values, e.g. [0, 1, 2] or even [1, 3, 8] entailing non-
equalised risk increase. In the following, we will explore two questions: i) To which
degree can numeric values be chosen objectively depending on system physical
effects? ii) How these chosen numeric values relate to the system output, which
is the risk rankings of DDMs.

3.6.1 Physical effect of value vectors
We put the numeric values in a 3-dimensional vector and name it as a value
vector.

3.6. System stability due to subjective choices 49

Every threat has a tangible effect on the system. With physical effect, we
mean the measurable effects of the threat risk attribute values on the components
in DDMs. Different value vectors express different physical effects. A value vector
determines the quantitative risk increase between subsequent qualitative levels of
each risk attribute, as explained in Table 3.1. For instance, the risk attribute
Accessibility has three levels, which are only by consortium parties, by both
consortium parities and 3rd party and by outsiders. If the system adopts a value
vector [0, 5, 10], it means the risk level increases in equal steps as increasing
qualitative levels. However, a value vector [1, 3, 8] implies that there is a higher
risk increase from medium to high than from low to medium. This higher increase
is because an attack from outsiders is considered more serious.

The choice of value vector should, in the first place, be determined by how the
risk is supposed to increase between subsequent qualitative levels. We can classify
those value vectors into two categories, namely, evenly spaced and non-evenly
spaced value vectors. Evenly spaced value vectors indicate equal steps in risk
increase between adjacent levels. If we represent a value vector as [vi,1,vi,2,vi,3],
an evenly spaced value vector is a 3-term arithmetic progression vi1 = a, vi2 =
vi1 + δ, vi3 = vi1 +2δ. These evenly spaced value vectors are more interesting for
us because they fit for most scenarios and share the same physical effect of the
original value vector from the Microsoft STRIDE/DREAD model. Non-evenly
spaced value vectors include some distortion and have different steps between
neighbouring risk attribute levels. If one opts for an evenly spaced value vector,
there are still many choices having the same physical effect, e.g. [0, 5, 10] versus
[0, 1, 2]. The decision of which one to choose exactly turns to be subjective. So
it is important to validate the methodology stability with distinct value vectors
of similar physical effect. Particularly, we would like to investigate the system
stability for the DL4LD use case.

We define a metric Spreading Level SL to characterise different value vectors.
Those value vectors indicating similar physical effect should have the same SL.
The spreading level of a value vector v⃗i = [vi,1,vi,2,vi,3] is calculated as:

SL(v⃗i) = (vi,2−vi,1)− (vi,3−vi,2) (3.8)

3.6.2 Metrics definition
In this section, we further explore how the subjectively chosen parameters, value
vectors, influence the output of the risk assessment system.

As introduced in section 3.4, module II computes the application-dependent
risk of each threat with the modified STRIDE/DREAD model and calculates the
risk ratios all the threats in the approved threat list. Obviously, both the threat
risk and risk ratios are varying with the chosen value vector. Those fluctuated
risk ratios further flow into module III in the system for threat mitigation. The
security countermeasures and risk ratios jointly determine the DDM rankings. In

50 Chapter 3. Risk assessment framework

the ideal scenario, the risk assessment system would always generate the same
ranking for DDMs for a given application regardless of subjective choices. Abso-
lute values of risk ratios play a vital role.

Also, most users of the DREAD/STRIDE model, or our modified version, are
focused on the rankings of threats in terms of their risk. We expect stable ranking
results for those value vectors with the same physical effect. So we investigate
the variance of threat risk rankings caused by a subjectively chosen value vector.

Two metrics are adopted to quantify the variance of risk ratios with various
value vectors: Kendall’s Tau and Normalised Mean Square Error (NMSE).

Kendall’s Tau

We are able to rank the threats in terms of risk according to their risk ratios.
Kendall’s Tau is one of the commonly-used metrics to measure the similarity of
two rankings [27]. We use it to measure the stability between threat rankings of
different adopted value vectors.

The definition is as follows:

τ(Tx,Ty) = #concpairs(Tx,Ty)−#discpairs(Tx,Ty)(
N
2

) , (3.9)

where Tx represents a threat ranking according to risk ratios with value vectors
v⃗x and Ty represents a threat ranking according to risk ratios with value vector
v⃗y, and N denotes the total number of threats in the list. This leads to a set of(

N
2

)
pairs. For any pair of value vectors v⃗x and v⃗y, we calculate the risk ratios

for the N threats: (rrx(ti), rry(ti)), where rrx(ti) is the risk ratio of threat ti in
Tx with v⃗x and rry(ti) is the risk ratio of threat ti in Ty with v⃗y. #conc pairs
denotes the number of threat pairs that are concordant in both rankings Tx and
Ty, and #disc pairs denotes the number of threat pairs that are discordant in
both rankings. Threats ti and tj are considered a concordant pair if rrx(ti) ≤
rrx(tj), rry(ti)≤ rrx(tj). Otherwise, they are considered as a discordant pair.

Normalised mean square error

We choose the metric Normalised Mean Square Error (NMSE) to quantify the
variance of risk ratios due to different value vectors [26]. The reason we choose
NMSE rather than other metrics are twofold. On the one hand, NMSE is sensitive
to outliers. On the other hand, the results are not influenced by absolute values
after normalisation. The definition of NMSE is as follows:

3.7. Experimental validation of system stability 51

RRx = {rr1
(x), rr2

(x), rr3
(x), · · · , rrN

(x)} (3.10)

RRx = 1
N

∑
i

rr
(x)
i (3.11)

RRy = 1
N

∑
i

rr
(y)
i (3.12)

NMSE(RRx,RRy) = 1
N

∑
N

(rr
(x)
i − rr

(y)
i)2

RRx ·RRy
(3.13)

RRx denotes the risk ratios of N threats using value vector v⃗x. The risk ratio of
the ith threat with value vector v⃗x is denoted by rri

(x). RRx denotes the average
of all risk ratios in RRx.

3.7 Experimental validation of system stability
In this section, we validate the stability of the risk assessment system. Here we
focus on the stability of risk ratios because they influence the stability of DDM
rankings of the risk assessment system. We compute and analyse the values of
Kendall’s Tau and NMSE of varying value vectors under different experimental
settings.

3.7.1 Experimental design
In the experimental validation, we consider value vectors v⃗i = [vi,1,vi,2,vi,2] with
vi,j ∈ {0,1, . . . ,10}. We construct a set Vtotal of 165 different value vectors. In
particular, the value vector used by the original Microsoft DREAD model is called
the baseline value vector v⃗base, in our case v⃗base = [0,5,10].

Experiment A

In this experiment, we aim to explore the sensitivity of the threat risk rankings
to the applied value vectors in a general sense. We compute the two metrics,
Kendall’s Tau and NMSE, between risk ratios for any value vector v⃗i in Vtotal and
for v⃗base, i.e. τ(Tx,Ty) and NMSE(RRx,RRy) where v⃗x ∈ Vtotal and v⃗y = v⃗base.
This results in a set of Kendall’s Tau values and a set of NMSE values. The size
of each set is equal to the size of Vtotal.

Experiment B

In this experiment, we aim to evaluate the fluctuations of threat risk rankings
among value vectors of similar physical effect. According to the discussion in

52 Chapter 3. Risk assessment framework

Section 3.6.1, those value vectors with similar physical effect should have the
same spreading level. Hence, we partition all the value vectors in set Vtotal

in groups with equal SL. We calculate the two metrics, Kendall’s Tau and
NMSE, for any pair of value vectors in each equal SL cluster, i.e. τ(Tx,Ty)
and NMSE(RRx,RRy) for the value vectors v⃗x, v⃗y ∈ Vtotal with v⃗x ̸= v⃗y and
SL(v⃗x) = SL(v⃗y). In this way we can achieve the variation of system outputs due
to the subjective choice of value vectors.

3.7.2 Experimental threat database
We need to construct proper threat databases to compute and analyse risk ratios
of a threat set. For simulation purposes, the assigned values of the five risk
attributes described in Table 3.1 can uniquely identify each threat. In the current
experiment, we consider two threat databases, namely, the theoretical threat
database and the DL4LD threat database.

For the theoretical threat database, we consider all possible combinations of
5 risk attributes, each of which can be one of the 3 values in a value vector. The
total number of threats in this database is 35 (243). Obviously, any real-world
threat database, like the DL4LD threat database, is a subset of the theoretical
threat database.

We have introduced 7 collaboration archetypes in Chapter 2. We model the
threats for those archetypes and construct the DL4LD threat database. There are
in total 22 threats for all archetypes in the DL4LD threat database as depicted
in 3.2. For each threat, we read the related literature and determined the levels
of 5 risk attributes.

3.7.3 Analysis of Kendall’s Tau values
We compute Kendall’s Tau values between threat risk rankings generated by the
baseline value vector [0, 5, 10] and any arbitrary value vector in set Vtotal for both
theoretical and DL4LD threat database. For each database, we rank all threats
according to their risk ratios computed in Equation 3.4.

Figure 3.6a shows the Cumulative Distribution Function (CDF) of those
Kendall’s Tau values for both theoretical and DL4LD threat database. For the
theoretical threat database, all of the value vectors contribute to Kendall’s Tau
values higher than 0.95, and 50 % of the value vectors have Kendall’s Tau values
higher than 0.99. We conclude that the threat risk ranking is almost stable for
all value vectors in the theoretical database. For the DL4LD threat database, ap-
proximately 50 % of the value vectors have Kendall’s Tau values higher than 0.99,
which is similar to the DL4LD use case. But another half have Kendall’s Tau
values between 0.91 and 0.94, which are lower than the minimum value for the
theoretical threat database. The comparatively larger ranking variance for the
DL4LD use case may be due to the characteristics of the DL4LD threat database.

3.7. Experimental validation of system stability 53

Table 3.2: The threat list in DL4LD database. For each threat, we assign corre-
sponding Stage, Category and Risk Attributes according to literatures. ’H’, ’M’,
’L’ represent ’High’, ’Medium’, ’Low’ respectively. ’SO’ stands for the ’sensitivity
of the object’. ’TOP’ stands for the highest level of ’sensitivity of the object’.

Threat Name Stage Category Risk Attributes
DP AC SL AU D

IP spoofing II S SO H M H M
Identity spoofing: Remote Data Access III S SO H L M H
Insecure data deletion III ID SO M L M H
Malicious compute: Data Disclosure III ID SO L H H M
Unauthorized Disclosure: Eavesdropping II ID SO H H M H
Weak Access Control I ID SO H H L H
Malicious compute: High Correlation of Input and Output Data III ID SO L H H M
Encryption Keys Leakage during Exchange II ID TOP H L H H
Cross-tenant Side Channel Attack III ID SO M L H H
Management Interface Compromise I, III ID, T SO M M M M
Isolation Failure: Poorly Separated Container Traffic III ID SO L L H H
Isolation Failure: Cross Container Attack III ID SO M L H H
Insecure Running Environment III ID SO M L H H
Man-in-the-Middle II T SO H M M L
Malicious compute: Tamper Processed Data III T SO L H H L
Log Files Tampering: illegal members delete or modify log files I, II, III T TOP L L H L
Data Leakage/Loss I T SO H L M L
Not-trustable Computing Environment III T, ID SO M M H L
Denial of Service (DoS) Attack by Co-tenant Containers III DoS SO L H H L
Container Runtime Escape III EP SO L M H M
Repudiation Attacks II R SO M L H L
Insufficient Auditing II R SO L H M H

54 Chapter 3. Risk assessment framework

0.92 0.94 0.96 0.98 1.00
Kendall's Tau

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc
en

ta
ge

Theoretical
DL4LD

(a) Cumulative Distribution Function of
Kendall’s Tau values

0.00 0.02 0.04 0.06 0.08 0.10
NMSE

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc
en

ta
ge

Theoretical
DL4LD

(b) Cumulative Distribution Function of
NMSE values

Figure 3.6: CDF of Kendall’s Tau values and NMSE between all value vector and
the baseline value vector [0, 5, 10] for both the theoretical and the DL4LD threat
database.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Spreading Level

0.96

0.97

0.98

0.99

1.00

Ke
nd

al
l's
 T
au

 (H
ig
he

r t
he

 b
et
te
r)

Theoretical Threat Database

(a) Box plots of Kendall’s Tau in theoretical
threat database

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Spreading Level

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ke
nd

al
l's

 T
au

 (H
ig

he
r t

he
 b

et
te

r)

DL4LD Threat Database

(b) Box plots of Kendall’s Tau in DL4LD
threat database

Figure 3.7: All value vectors in set Vtotal are grouped with identical spreading
level ranging from -7 to 7. Each value vector indicates a bijective mapping from
qualitative levels of risk attributes to numeric representations. For each value
vector cluster with identical spreading level, we compute Kendall’s Tau values
between any pairs of value vectors and plot them as a box.

For two threats with higher diversity of risk attributes levels, their rankings are
likely to flip with different value vectors. For instance, if we have two threats
with risk attributes [L, L, L, L, L] and [H, H, H, H, H], the ranking will never
alter no matter how you change the adopted value vectors, because [L, L, L, L,
L] will always have the lowest risk ratio and [H, H, H, H, H] will always have the

3.7. Experimental validation of system stability 55

highest. The rank of threats with risk attributes [L, H, L, M, L] and [M, L, M, H,
M] most likely will flip after changing the value vectors. A higher proportion of
such sensitive threats exists in the DL4LD threat database than in the theoretical
threat database.

Figure 3.7a and Figure 3.7b show the box plot for Kendall’s Tau values as a
function of SL for the theoretical and the DL4LD threat database respectively.
The Kendall’s Tau values are computed according to Experimental Design B in
Section 3.7.1. All the value vectors in set Vtotal are grouped with equal SL. Each
box depicts the Kendall’s Tau values computed between all possible pairs of value
vectors within an equal SL group.

Figure 3.7a shows Kendall’s Tau values among threats rankings for the the-
oretical threat database. We specifically focus on evenly spaced value vectors
because they are most commonly used in reality. The Kendall’s Tau values of
evenly spaced value vectors (SL = 0) are all equal to 1. A subjectively chosen
value vector with SL equals to 0 does not influence the risk ranking of all theo-
retical threats. Also, since all the real-world threat databases, e.g. DL4LD threat
database, are a subset of the theoretical database, the Kendall’s Tau values among
evenly spaced value vectors should always be 1 for any threat database. The re-
sults illustrated in Figure 3.7b confirm this conclusion. More generally, as shown
in Figure 3.7a, 9 out of 15 boxes have all values extremely close to 1, whereas
4 boxes have a slightly higher degree of dispersion, but the minimums are still
larger than 0.99. Only two outliers around 0.955 occur for boxes SL = −5 and
SL = 2 respectively. Subjective choices of value vectors having the same spread-
ing level do not cause the risk rankings to fluctuate. As the theoretical database
includes any real-world threat database, we may expect similar high stability
achieved in any other threat database, e.g. DL4LD. Figure 3.7b shows the box
plots for the DL4LD threat database. Similarly, most value vector clusters have
Kendall’s Tau values very close or all equal to 1. But the worst case, the two
outliers in boxes with SL = −5,2, have comparatively higher variance than for
the theoretical database.

For both the theoretical and the DL4LD use case, there is almost no or ne-
glectable influence due to the subjective choices of value vectors having the same
physical effect (spreading level).

3.7.4 Analysis of normalised mean square error (NMSE)
The metric NMSE describes the variance of absolute values of risk ratios with dif-
ferent value vectors, which have a direct impact on final DDM exposure rankings.
To explore the general sensitivity of risk ratio values to varying value vectors, we
compute NMSE values between the baseline value vector [0, 5, 10] and any value
vectors in set Vtotal.

Figure 3.6b shows the Cumulative Distribution Function (CDF) of NMSE
values computed with all value vectors in set Vtotal for both the theoretical and

56 Chapter 3. Risk assessment framework

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Spreading Level

0.00

0.02

0.04

0.06

0.08

0.10

0.12

NM
SE

 (L
ow

er
 th

e
be

tte
r)

Theoretical Threat Database

(a) Box plots of NMSE in theoretical threat database

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Spreading Level

0.00

0.01

0.02

0.03

0.04

NM
SE

 (L
ow

er
 th

e
be

tte
r)

DL4LD Threat Database

(b) Box plots of NMSE in DL4LD threat database

Figure 3.8: All value vectors in set Vtotal are grouped with identical spreading
level ranging from -7 to 7. Each value vector indicates a bijective mapping from
qualitative levels of risk attributes to numeric representations. For each value
vector cluster with identical spreading level, we compute NMSE values between
any pairs of value vectors and plot them as a box.

3.7. Experimental validation of system stability 57

the DL4LD threat database. For the theoretical threat database, approximately
50% of the value vectors result in an NMSE value smaller than 0.03 compared with
the baseline value vector. An NMSE value of 0.03 means that the average shift
between two data sets, risk ratios with two value vectors, is 3% of the product
of mean values of the two data sets. For some specific value vectors, risk ratios
vary unneglectable comparing to those computed with the baseline value vector.
About 18% of value vectors in set Vtotal result in an NMSE value higher than
0.06, and the maximum value is 0.1. This is due to the non-linear mappings from
qualitative levels to quantitative numbers in module II. However, the risk ratios
are much less sensitive for threats in the DL4LD use case. Also shown in Figure
3.6b, approximately 95% of the value vectors in set Vtotal have NMSE values
smaller than 0.03 for the baseline value vector. The maximum value of NMSE is
only 0.06. One reasonable explanation is that absolute larger differences of risk
ratios normally occur for threats with a smaller risk attributes level diversity, e.g.
[L, L, L, L, L] and [H, H, H, H, H]. Such threats are not frequently included in
the DL4LD threat database or any other real-world threat database. Hence we
may expect the risk assessment system is quite robust against subjective choices
of value vectors for the majority of use cases.

Figure 3.8 shows the box plots of NMSE values as a function of SL for both
the theoretical and the DL4LD threat database. For value vectors of the same
SL, we calculate NMSE values of risk ratios with every two value vectors in the
group.

We first analyse stability for evenly spaced value vectors. Shown in Figure
3.8a and Figure 3.8b, the dispersion degrees of boxes for SL = 0 are very small.
The pairwise NMSE values among evenly spaced value vectors for both threat
databases are concentrated in the medians of the boxes, which are about 0.015,
and 0.008 respectively. There are no outliers of relatively higher NMSE values.
These NMSE values imply that the system is highly stable to subjective choices
for value vectors with linear mappings from risk attribute qualitative levels to
numeric representations.

Figure 3.8a shows the box plots for the theoretical threat database. Each box
has a relatively high degree of dispersion, and the median value is around 0.01.
An NMSE value of 0.01 is quite acceptable and has a relatively small probability
of causing a ranking flip for DDMs in the final output of our system. The NMSE
values in Figure 3.8a indicate that the ranking is stable for about 50% of value
vectors for each equal SL cluster. However, outliers from 0.07 to 0.13 occur in
most value vector clusters, especially for those with negative SL values. However,
the system stability is much higher for the DL4LD use case shown in Figure 3.8b.
All the boxes for the DL4LD threat database have median values of 0.005, which
are much smaller than that of the theoretical threat database. Furthermore, the
outliers are much acceptable, with the maximum value smaller than 0.05. The
DL4LD use case is very robust to value vector variance.

58 Chapter 3. Risk assessment framework

3.8 Experimental validation of system resolu-
tion

In this section, we aim to validate the achieved resolution of our methodology
provided by the output of module II, which are risk scores. We define a metric
of Granularity to measure resolution quantitatively. We try to investigate how
the chosen value vectors influence the system resolution for both theoretical and
DL4LD threat database. In addition, we also explore whether the current method-
ology can provide sufficient Granularity for identified threats in the DL4LD use
case.

3.8.1 Definition of granularity and experimental design
The metric Granularity aims to evaluate the resolution of our methodology in
module II. Granularity is defined as the total number of unique values of
risk scores for a given threat database. This metric describes the capability
of distinguishing between threats in terms of assessed risk. It is usually not
expectable that many threats result in the same risk level, which is equal to the
value of computed risk score.

We adopt the same value vector set Vtotal as described in Section 3.7.1. We
compute Granularity with each value vector in Vtotal for both theoretical and
DL4LD threat database. As mentioned in Section 3.7.1, the number of threats
is 243 in the theoretical database and 22 in the DL4LD threat database. We
also consider the influence of assigned impact factor, which has been explained
in Section 3.3.2, on the resulting system resolution. Any of the 5 impact factors
scales a threat and the risk score of that threat is scaled accordingly.

3.8.2 Analysis of granularity values
Figure 3.9a and Figure 3.9b show the values of granularity with various value
vectors in the theoretical threat database and the DL4LD threat database re-
spectively, with the spreading levels depicted in different colours.

Firstly, we investigate the relationship between achieved Granularity and
spreading level of value vectors. For both threat databases shown in Figure 3.9,
non-evenly spaced value vectors (SL ̸= 0) normally gain much better resolution
than evenly spaced ones (SL = 0). Also, the value vectors of different spreading
level have a similar range of Granularity for all non-evenly spaced value vectors.
Based on the conclusion drawn in Section 3.7, those evenly-spaced value vectors
normally have comparatively higher stability. A higher resolution is achieved at
the sacrifice of system stability.

The values of Granularity fluctuate for value vectors of identical SL. We
recommend DDM customers to choose a value vector with relatively high Gran-

3.8. Experimental validation of system resolution 59

(a) Granularity of threats in the theoretical database with various
values vectors

(b) Granularity of threats in the DL4LD database with various values
vectors

Figure 3.9: Values of Granularity with varying value vectors for both the theo-
retical and the DL4LD threat database. The value vectors are firstly sorted with
increasing spreading level. For those with equal spreading level, the value vectors
are in lexicographic sorted order.

60 Chapter 3. Risk assessment framework

ularity and to avoid those with very low resolution. As shown in Figure 3.9a and
Figure 3.9b, the relative relations of Granularity values among same value vectors
for both threat databases are similar. For each group with equal SL, there is a
value vector resulting in a low Granularity value. Those value vectors are sorted
in lexicographic order for an equal-SL cluster. Hence those value vectors with the
first element as 0 contribute to relative worse resolution compared with those of
similar physical effect. According to the above observation and discussion, our
system can warn system users when they use such value vectors.

We further discuss the absolute values of Granularity for both threat
databases. As shown in Figure 3.9a, evenly spaced value vectors have Granu-
larity between 25 and 45. For a threat database of 243 threats with 5 different
impact factors, on average 27 threats may result in the same risk level even adopt-
ing the value vector with the highest resolution. The performance for non-evenly
spaced value vectors is better with Granularity values between 35 to 80. Never-
theless, there are still on average 15 different threats that are not distinguishable
for their risk with the current methodology in the theoretical threat database. As
indicated in Figure 3.9b, the DL4LD use case performs very well regarding the
small size of the threat database of only 22 threats, each of which may have 5
different impact factors. The Granularity values are around 20 for evenly spaced
value vectors and vary from 24 to 45 for non-evenly spaced ones. Compared to
the theoretical threat database, the DL4LD threat database can achieve approx-
imately half of the Granularity with only one-tenth of the threats number. The
discussion above indicates the system provides sufficient resolution to distinguish
threats in the DL4LD use case.

3.9 Related work
Recent research assesses the security provided by digital infrastructures, e.g.
clouds. [34] proposed an approach to assess the security of a cloud platform,
but it only focuses on individual threats separately and provide only qualitative
evaluation results. [35] proposed a methodology to assess the security level of a
Security Service Level Agreement (SecSLA) with respect to customers’ require-
ments. The work allows cloud clients to compare SecSLAs provided by different
cloud service providers (CSP) and aims to provide costumers with a general view
of security coverage of the provided infrastructures. The security controls of the
cloud infrastructures are classified based on the Cloud Control Matrix (CCM)
taxonomy, which makes the proposed system very difficult to migrate to another
application context, e.g. Digital Data Marketplaces. [36] advocate a similar se-
curity evaluation methodology of SLAs by using a trust model. Different security
countermeasures are chained according to the taxonomy defined in this trust
model. The system measures the security strength from multiple dimensions and
computes a trust value. Nevertheless, these authors fail to consider that the vul-

3.9. Related work 61

nerabilities, normally varying with each application, have a strong influence on
the effectiveness of applied security countermeasures. [37] proposed an off-line
risk assessment framework to evaluate the security level of an application for a
specific CSP. They first identify the threats for a given application and estimate
how much risk can be mitigated with the CSP’s infrastructures. However, the
system treats all the identified threats with equal severities and this is not what
happens in real world scenarios.

There are multiple risk management frameworks for information systems. The
ISO provides standards with which an information system can gain adequate se-
curity. The standards describe the control objectives, required security controls
and guidelines. The ISO standards are widely used as certifications for companies
to verify the security of their information systems and promote customer’s trust
[38]. The National Institute for Standards and Technology (NIST) cybersecu-
rity framework also offers guidance to facilitate risk management within specific
organisations [39]. This framework aims to keep an information system safe by
identifying security gaps. OCTAVE is also a risk-based assessment and planning
process. It identifies the infrastructure vulnerabilities and develops protection
strategies in design [40]. However, all the work mentioned above focuses on
risk management while establishing a digital infrastructure. After risk analysis,
the output of those frameworks are implementation requirements, e.g. security
countermeasures, user action guidance’s, for a single information system. Our
proposed framework aims to choose the most secure digital infrastructures in an
application-based manner with risk scores. CORAS is a model-driven risk assess-
ment framework. It identifies the threats of a use case, assess the risk of each
threat and develop treatments [41]. But it does not consider the relative impor-
tance of each threat and does not provide a total risk score for ranking different
DDM infrastructures.

The Microsoft STRIDE/DREAD model provides a threat modelling approach
and assesses a single threat risk by proposing attributes measuring difficulties of
exploiting the vulnerability [22]. Most studies of the STRIDE/DREAD model
focus on risk evaluation of an individual threat and provide threats ranking re-
garding their risk [42, 43]. In [29], the authors used’ the STRIDE/DREAD model
to assess and prioritise threats in a cloud environment. They adapt the original
risk parameters to the cloud environment and assign impact factors to each threat
category. However, their model does not fit the context of DDMs, where appli-
cations are modelled as workflows and trust among collaborating parties plays a
vital role. Moreover, all the studies in [29, 42, 43] just inherit the numeric values
of risk attributes from the original Microsoft STRIDE/DREAD model without
validating the objectivity of the choices.

From this overview it is clear that our work covers a currently unexplored
area. Firstly, it specifically caters to DDMs and their customers. Secondly, it as-
signs severity weights for identified threats, with the modified STRIDE/DREAD
model, to achieve more objective risk assessment results. Thirdly, we investigate

62 Chapter 3. Risk assessment framework

the robustness and resolution of our proposed system against subjective choices of
risk parameters in the original STRIDE/DREAD model with real world security
threats.

3.10 Conclusions and future works
Customers of DDMs, or other digital infrastructures, need to know what is the risk
level associated with running their applications in any specific DDM. We propose
a risk assessment system to quantitatively assess the risk level. This system allows
customers to rank available digital infrastructures in terms of guaranteed security
and select the optimal one for their applications.

To increase transparency, the system collaborates interactively with all in-
volved. It addresses the complexity of DDMs by considering a number of in-
fluencing factors, such as application archetypes, security requests of DDM cus-
tomers, interactions of security countermeasures. Our proposed system considers
the relative importance of each threat and is able to capture the dynamic feature
of risk levels in data exchange applications in DDMs.

We validated the stability and resolution of the Microsoft STRIDE/DREAD
model in our risk assessment system with a concrete DDM use case, DL4LD. Our
experimental results show that subjective choices of users have a very subtle in-
fluence on the final DDM rankings of the system. In addition, the risk assessment
system provides sufficient resolution and works very well in terms of stability for
the DL4LD use case.

In this chapter, we conducted a threat analysis for the DL4LD dataset. We
observed that there is a lack of countermeasures to deal with the vulnerabilities in
the execution stage of a data exchange application. We focus on designing DDM
components that help increase policy enforcement capability in the execution
stage in Chapter 4 and Chapter 5.

Chapter 4
Policy compliance detection with syscall
profiling

It is vital to improve the policy compliance detection capability of the digital
infrastructures in the execution stage, where the algorithms and data meet. Mul-
tiple containers may run on the same platform with permissions to execute on
different data sets. It is crucial to ensure that each data set is only accessed by the
authorised algorithm defined in the policy. The algorithms in DDMs are normally
encapsulated in containers to gain better portability and higher isolation level.
Normally the DDM infrastructures are not allowed to access the containers or
the algorithm source code directly to avoid information leakage. In this chapter,
we propose a profiling architecture to distinguish containerised algorithms by ex-
ternal monitoring and start to answer our RQ3. We profile dynamic behaviours
of running algorithms with Linux-kernel system call traces and investigate the
stability of the proposed methodology with seven typical containerised machine
learning applications over different execution platform OSs and training data sets.

This chapter is based on:

• Lu Zhang, Reginald Cushing, Ralph Koning, Cees de Laat, and
Paola Grosso. ”Profiling and Discriminating of Containerized ML
Applications in Digital Data Marketplaces (DDM).” In ICISSP, pp.
508-515. 2021.

4.1 Introduction
The collaborating parties, e.g. data providers and algorithm providers, normally
come to a DDM with a pre-agreed policy. For example, a typical policy rule
is A data object can only be accessed by a specific compute object pre-defined
in the policy, but not by the others. To ensure the security of such policy-driven

63

64 Chapter 4. Policy compliance detection with syscall profiling

applications, a DDM infrastructure should include components that detect policy
non-compliance.

The container level virtualisation has gained significant attention in recent
years. Containers are operating system level virtualisation abstractions. A con-
tainer image is a lightweight, executable package including source code, program
runtime and libraries [44]. The compute objects in a DDM are normally con-
tainerised so that they are easily adapted to various execution platforms[45].
According to different collaboration models, the execution process can occur on
the data provider side, algorithm provider side or a third-party platform. Most
of the platforms do not have the privilege to check the source code for confiden-
tiality reasons. Therefore, it is essential for DDM infrastructures to implement
components that can distinguish containerised applications only depending on
external monitoring.

System calls provide an interface to the services provided by an operating
system. They are used by user-level applications for various reasons, including
file management, process control, device management and communication. These
system calls give us a way to monitor what user-level applications are doing. The
behaviours of a computer program can be well modelled as system call sequences
[46].

We propose an architecture to distinguish running containers by establishing
and verifying system call profiles. An authorised party builds an authorised profile
of a specific computing algorithm after verifying the source code. The program
behaviour is modelled with the occurrence of fixed length subsequence of system
calls (n-grams). The execution platform monitors system calls in real time and
can, at the end of execution, distinguish programs running inside containers based
on system call profiles. The dissimilarity between profiles is computed with cross
entropy. The system will trigger an alarm if there is a mismatch between the
policy and classification results.

System calls are highly localised, and the generated trace files vary with the
configurations of the execution platforms and the performed data sets [47]. There
is a basic requirement for the proposed architecture to allow authorised profile
reuse. To address these points, we investigate the suitability of the proposed
methodology over different Linux distribution operating systems and with differ-
ent training sets with 7 typical ML applications in DDMs.

The remaining of the chapter is structured as follows. We introduce system
architecture in Section 4.2 and the proposed methodology to gather and generate
profiles in Section 4.3, Section 4.4 and Section 4.5. Section 4.6 and Section 4.7
introduce the definitions of self-variance and stability respectively. Section 4.8
presents the experimental results of classification accuracy. Our methodologies
and results, as well as next steps, are discussed in Section 4.9. In Section 4.10
we compare our architecture with existing ones and Section 4.11 concludes this
chapter.

4.2. Architecture 65

4.2 Architecture
We propose an architecture to enforce the data access and usage policy among
collaborating parties during the execution phase of a data sharing application.
The architecture can be implemented as one of the enforcement components for
DDM infrastructures.

Figure 4.1: A DDM enforcement component to distinguish and verify running
algorithms inside containers with system call profiles.

As shown in Figure 4.1, the data providers and algorithm providers first agree
on a policy for the data sharing application. The policy describes the purpose of
the computing algorithm, e.g. the algorithm can perform on which specific data
set. For portability, the computing algorithms in DDMs are encapsulated into
containers.

Secondly, the algorithm provider sends its compute algorithm, one or multiple
images, and the policy to an authorized party for verification. The authorized
party can either be a DDM component or an external trusted 3rd party. This
checks the source code and verifies whether the given algorithm complies to the
policy. If so, the authority party generates profiles of the application images with
system call traces and sends them to the execution platform. These profiles are
digitally signed and encrypted with the public key of the execution platform.
Thus the risk of mimic attacks for profiling is highly reduced [48].

Thirdly, both data objects and compute objects are sent to the execution
platform. To keep confidentiality of the algorithm, the compute containers are

66 Chapter 4. Policy compliance detection with syscall profiling

normally executed by its owners remotely. The platform monitors system calls
of running containers and feeds the information to a classifier. The classifier
discriminates running programs inside each container in real time. The classifier
computes the dissimilarities between the observed tracefiles with all authorized
profiles.

With the permission of DDM collaborating parties, the authorized party and
execution platform can choose to send metadata to a DDM registry. The meta-
data contains the hashed application name and pre-processed profiles. For ex-
ample, a subsequence of system calls can be encoded into binary identifiers. The
registry can exploit those data and compute a reference threshold for outlier de-
tection in the classification algorithm.

4.3 Profile generation
In most related works, the system call profiles are used to detect anomalies during
the execution[47, 49]. The interest, in this case, is on a specific subsequence that
indicates malicious behaviour. We instead use the profiles to distinguish among
running applications. Hence it is important to consider the behavioural variance
of system call trace files when containerized applications are running with different
configurations. For instance, the system call traces of a specific ML algorithm may
change with different training data sets or with multiple runs. This may cause
false alarms when we use system call profiles to distinguish compute applications.

Figure 4.2 shows the graphical representation of profiles of two different appli-
cations. The red dots represent the system call profiles generated by Application
1. The scatter pattern we observe is caused by different training platforms, dif-
ferent training data sets or even different runs. The blue triangles represent
the profiles of a different application. Good profiling and similarity computa-
tion methodology will reduce the noise and only extract the information which
actually represents the algorithm behaviours.

We define self-variance of a profiling methodology to be the dissimilarities
among system call profiles of the same application. As illustrated in Figure 4.2,
the self-variance reflects the degree of dispersion of red dots (profiles of App1) or
blue triangles (profiles of App2). Higher self-variance indicates a larger dashed
circle. It represents how sensitive a profiling methodology is to the intrinsic vari-
ability of the running application. The quantitative definition of self-variance
depends on dissimilarity measures in the classifier. The self-variance conveys im-
portant information when profiles are used for application discrimination. Higher
self-variance is likely to cause a higher false negative rate when making the deci-
sions.

In the next sections we will present our methods and results on classification.
To investigate our proposed methodologies, we set up an experimental environ-
ment illustrated in Figure 4.3. We want to emulate the action of the authorized

4.3. Profile generation 67

Figure 4.2: Graphical representation profiles of different applications. Profiles
from the same application cluster together (red dots); a different application
profile (blue triangle) is distinctly separate.

3rd party in Fig. 4.1 when it generates the profile as well as the actions of the
execution platform when it is monitoring running applications.

Figure 4.3: Profile generation setup: a single physical host running Docker con-
tainers and the Sysdig probe in the Linux Kernel

We run containerized applications within a physical node. We use Sysdig to
monitor the generated system calls because it is specifically designed for contain-
ers [50]. The Sysdig probe is placed in the Linux kernel of the host machine and it
traces all the system calls generated by the container. The input data is accessed
as the volume of the Docker container.

As shown in Fig 4.3, the result of this setup is the system call raw trace file
which will serve as the input of Filtering component. The Filtering component
filters out all system calls generated by the container runtime. Finally, the Profile

68 Chapter 4. Policy compliance detection with syscall profiling

Generator will generate profiles with the proposed methodology, which will be
introduced in Section 4.5.

4.4 Classic n-gram profiles and limitations
Recently, there are plenty of work using fixed length subsequence to detect
characterize behaviors of running processes [48, 51, 52]. They segment a sys-
tem call trace into fixed length sub-sequence with a sliding window of length
n (normally 3 - 6). The subsequences are called n-grams, with n being
the length of the subsequence. Suppose we have a sequence of system calls
such as fstat,mmap,close,open,read,write · · · . This can be segmented into
a list of n-grams with length 3: {fstat,mmap,close}, {mmap,close,open},
{close,open,read}, {open,read,write}, {read,write · · ·}. The underlying prin-
ciple of this methodology is that each n-gram represents a small execution code
path.

The traditional n-gram profiling methodology was proposed in [46]. It builds
the profile as an enumeration of all occurring n-grams and the deviation between
two distinct profiles is computed as the number of n-grams that are distinct in two
profiles. With the setup illustrated in Figure 4.3, we aim to investigate the self-
variance of traditional n-gram profiles. The application is a containerized machine
learning algorithm training a classifier for fraud detection. The operating system
for the execution platform for this experiment is Ubuntu 18.04. We first run a
docker container with the same training data set for 10 times and investigate the
self-variance of the generated n-gram profiles.

As seen in Figure 4.3, Sysdig traces system calls are generated by an entire
container runtime. It is interesting when looking at the self variance to filter out
the runtime generated system calls from the raw trace file. We filter out these
calls with a text processing script we wrote for this purpose, as illustrated in the
Filtering module in Figure 4.3.

Table 4.1: Average number of n-grams for the fraud detection application, before
and after filtering of runtime generated system calls in three categories: all n-
grams, pair-wise common n-grams and overall common n-grams.

ngrams # pairwise common ngrams # overall common ngrams
Before Filtering 1520 1310 1205
After Filtering 1370 1200 1125

Table 4.1 shows the average number of n-gram in the 10 profiles for the same
application. We distinguish between profiles generated by the entire container,
including application and container runtime and profiles with container runtime
calls filtered out. Not surprisingly, we observe that all cases the number of n-

4.5. Profiling with n-gram frequency distributions 69

grams for filtered trace files is lower since the runtime-generated noise is filtered
out.

The similarity of two n-gram profiles can be measured as the proportion of n-
gram entries that are common in both files. We do a pair-wise comparison of the
n-grams in the 10 trace files and show the average number of pair-wise common
n-grams in the middle column. Finally we present the average number of overall
common n-grams in all 10 trace files in the last column.

We first focus on unfiltered trace files. We can see that the average number
of unfiltered n-grams is 1520; this reduces to 1310 when we do the pair-wise
comparison and finally only 1200 n-grams are common to all 10 tracefiles. We
can calculate that there are only around 86% of the n-gram entries are common
between arbitrary two profiles, as this is the ratio between 1200/1520. In addition,
the overall similarity is only 78%.

Looking at the filtered profiles we see that the pair-wise similarities are ap-
proximately 88% and the overall similarity is 82%. This is only slightly better
than the unfiltered case and the likelihood of false negatives is still high.

In addition, larger variance is expected if we further consider the effect of
different training data sets or different execution platform OSs due to the obser-
vation the generated system calls are varying with execution environment [47].

From this we can conclude that the classic n-gram profiling and distance
computation methodology are likely to generate false alarms if we adopt it for
discriminating containerized applications. In the next sections we will propose a
different profiling methodology that can solve this issue.

4.5 Profiling with n-gram frequency distribu-
tions

The traditional n-gram method presented in section 4.4 builds the profile with
distinct fix-length subsequences without information on the corresponding fre-
quency. However, the frequency distribution conveys information for describing
the behavior of a program. Using the same application (fraud detection) and
using the 10 filtered profiles we have obtained in the previous experiment we
produce the occurrence distribution.

Figure 4.4 shows the CDF of the occurrence distribution of each n-gram in one
run of our machine learning application. The axis is the number of occurrence of
each n-gram.

There are in total 1350 distinct n-grams in this profile. The occurrence num-
bers of those n-grams range from 1 to as high as 105. As shown in the Figure,
more than 50% of the n-grams occur very rarely with occurrence numbers of 1.
We expect that those rarely occurred n-grams contain little or at least less im-
portant information about the actual program behaviors. On the other hand,
n-grams which occur often provide a clear signature of the application.

70 Chapter 4. Policy compliance detection with syscall profiling

Figure 4.4: CDF of occurrence distribution of n-grams in one filtered tracefile -
a tracefile containing only the container runtime calls.

This observation is in fact confirmed when we compare the n-gram entries that
are different between two profiles of our application. We observe that almost all
of those distinct n-gram entries occur only once in the profile. In this sense,
we confirm that the traditional n-gram profiling methodology which treats all
the distinct n-grams entries equally does not model the actual behaviour of an
application well and may result in a lower classification rate. Hence we propose to
profile a containerized program with the frequency distribution of n-gram entries.
We do expect that the distinctive signatures of the application’s profiles will result
in lower variance, i.e. a close clustering of profiles of the same application as in
Fig. 4.2 and a large distance from profiles of other applications.

To confirm our assumption we need to identify a method to calculate the
profile distances when they are expressed as frequency distributions of n-grams.
For this we introduce cross-entropy.

The dissimilarity of two profiles will then be computed using the cross entropy.
Suppose ODp = {nc

(p)
1 ,nc

(p)
2 , · · · ,nc

(p)
N } denotes occurrence distribution in

tracefile trp. nc
(p)
i indicates occurrence counts for i the n-gram in the trace-

file trp and N denotes the total number of distinct n-grams. Similarly, ODq =
{nc

(q)
1 ,nc

(q)
2 , · · · ,nc

(q)
M } denotes occurrence count of M n-gram entries in tracefile

trq. In most scenarios, we have two distributions with M ̸= N .
To obtain the cross entropy, two input distributions need to have an equal

number of entries. To accomplish this we define a procedure to adjust the sets.
We first compute the union set of ODp and ODq:

ODu = ODp

⋃
ODq = {nc1,nc2, · · · ,ncL} (4.1)

L≥M,L≥N (4.2)

L denotes the cardinality of the union set ODu. We create two sets ÔDp and

4.6. Self variance and mutual distance 71

ÔDq with L entries; we add all the n-grams contained in ODu but not in the
original ODp with an occurrence of zero to form the new set ÔDp. We do the
same procedure to form ÔDq.

ÔDp = {nc1,nc2, · · · ,ncN ,0,0} (4.3)
ÔDq = {nc1, · · · ,ncN ,0,0,0} (4.4)

To avoid zero probability, we adopt Laplace smoothing, specifically add-one
smoothing, to calculate the frequency distribution.

laplace smoothing = nci +1∑L
i nci +1

(4.5)

laplace smoothing : ÔDp→ FDp (4.6)
laplace smoothing : ÔDq→ FDq (4.7)

FDp = {fd
(p)
1 ,fd

(p)
2 , · · · ,fd

(p)
L } denotes the frequency distribution of each n-

gram entry after applying laplace-smoothing for tracefile trp. Similarly, FDq

denotes the smoothed frequency distribution for trq.
After this procedure, we can compute the cross entropy of two tracefiles trp

and trq as:

C(trp, trq) =
K∑

i=1
(fd

(p)
i −fd

(q)
i) · log fd

(p)
i

fd
(q)
i

(4.8)

The value of cross entropy has a lower bound of 0 if two distributions are
identical. A small value of cross entropy indicates a large similarity between two
distributions.

4.6 Self variance and mutual distance
In this section we validate our frequency distribution profile methodology by
looking at the self-variance and the distance of profiles calculated with cross-
entropy, which we define as follows.

Suppose TM = {t(M)
1 , t

(M)
2 , · · · , t(M)

P } represents the set of tracefiles for Appli-
cation M. Suppose TN = {t(N)

1 , t
(N)
2 , · · · , t(N)

Q } represents the set of tracefiles for
Application N.

The self-variance of Application M with tracefile set TM is the average value
of the cross entropy for any pair of tracefiles in set TM ×TM :

self variance(TM) = average(C(t(M)
i , t

(M)
j)) (4.9)

∀(t(M)
i , t

(M)
j) ∈ TM ×TM (4.10)

72 Chapter 4. Policy compliance detection with syscall profiling

Table 4.2: Typical Applications in DDMs and corresponding libraries and trace-
file size (average number of distinct n-grams of length 6). The experiments are
conducted in Ubuntu 18.04.

Application name Library # ngrams

APP 1 Unbalanced Classifier TensorFlow, Numpy, csv 1370
APP 2 Text Classification from scratch TensorFlow, Numpy 5491
APP 3 Collaborative Filtering TensorFlow, Numpy, Pandas 1394
APP 4 Federated learning Syft, aiomqtt, signal, Pandas, Numpy 1140
APP 5 S2S learning to perform addition TensorFlow, numpy 1452
APP 6 Train a LSTM TensorFlow, Numpy 1948
APP 7 Train a quisi-svm TensorFlow 2204

Similarly, the average mutual distance between two applications M and N is
calculated as:

Mutual Distance(TM ,TN) = average(C(t(M)
i , t

(N)
j)) (4.11)

∀(t(M)
i , t

(N)
j) ∈ TM ×TN (4.12)

To validate our methodology we select 7 typical DDM applications in the
related field of machine learning. Each application is encapsulated into a Docker
container [53]. All the algorithms are written in Python and primarily rely on
TensorFlow, an open source library that helps to develop and train ML models
[54]. The Docker images of all applications have a common underlying image
of Python Strech 3.6 and the algorithm script is running on top of it. The
applications and the used libraries are shown in detail in Table 4.2. We run
containers of all 7 applications as the experimental setup depicted in Figure 4.3.
The kernel operating system is Ubuntu 18.04 and we run 4 times each application.

We compute self variance and average mutual distances among all 7 container-
ized applications. The computation results are shown in Table 4.3.

The self variance of each application is shown as the value on the diagonal
line. The self variance is small compared to the mutual distances. This implies
our proposed classification methodology can provide a lower false negative rate
than the classic n-gram method.

When we look at the mutual distances between application we observe a num-
ber of interesting features. First we see that distances range from a value of 0.38
(App3-App5 pair) to 23 (App4-App6 pair). This large variation can be explained
by observing that a number of our applications use the same libraries; we there-
fore expect that those applications are more difficult to distinguish. This is in
fact the case for App4 which has a very unique set of libraries and therefore gives
larger distances.

4.7. Stability of proposed methodology 73

Table 4.3: Self variance and mutual distances among all 7 containerized applica-
tions.

APP 1 APP 2 APP 3 APP 4 APP 5 APP 6 APP 7

APP 1 0.064 5.21 1.42 12.5 3 3.35 5.56
APP 2 - 0.038 4.81 20 6.09 6.68 9.23
APP 3 - - 0.002 18 0.38 0.66 5.2
APP 4 - - - 0.045 22.3 23 19
APP 5 - - - - 0.0007 0.58 2.76
APP 6 - - - - - 0.0009 4.74
APP 7 - - - - - - 0.02

4.7 Stability of proposed methodology
The system call trace files of a running program depend on configurations of the
execution environment. As mentioned in Section 4.3, the generated profiles of
a specific application should be closely clustered together. In this section, we
will investigate the stability, quantified as self-variance, of generated profiles over
different operating system platforms and different training data sets.

In Section 4.6 we discussed the self-variances of our proposed methodology for
7 ML applications. Now we mainly focus on 3 of them: Application 1 - Unbal-
anced Classifier, Application2 Text Classification from scratch and Application3
- Collaboration Filtering as they are widely used ML algorithms in DDMs.

A trace file database is established with various configurations shown in Table
4.4.

Table 4.4: Tracefile database for three model application with different dataset
sizes

App 1 App 2 App 3
Ubuntu 18.04 CentOS 7 Debian GNU Linux 9

DS0 240000 items DS0: Training: 25000; Test:25000 DS0: 100000 items
DS1: 120000 items DS1: Training: 32000; Test:10000 DS1: 80000 items
DS2: 80000 items DS2: Training: 20000; Test:20000 DS2: 50000 items
DS3: 50000 items DS3: Training: 16000; Test:10000 DS3: 40000 items
DS4: 20000 items DS4: Training: 10000; Test:10000 DS4: 30000 items

The 3 applications are containerized with Docker. For each application, we run
the Docker container in 3 hosts with different Linux operation systems: Ubuntu
18.04 (kernel version 4.15.0), CentOS 7 (kernel version 3.10.0) and Debian GNU
Linux 9 (kernel version 4.9.0). In each host, the containerized ML algorithm is

74 Chapter 4. Policy compliance detection with syscall profiling

trained with 5 different training sets. Hence there are in total 15 configurations,
ie. operating system and dataset pairs, per application. The container runs 3
times under each configuration setting; and we have at the end 45 trace files
available. For all trace files, system calls generated by the container runtime are
filtered out.

4.7.1 Stability over different platform OSs
One of the benefits of application containerization is the portability over different
platforms. In DDMs environments it can be expected that the same application
will run at different times on different platforms, and that the operating system
(OS) of the execution platforms chosen to run on may vary. It would be obviously
very convenient if we could determine that a baseline profile generated by an
application in a certain OS can be used for classification in another OS. To assess
this we need to determine what is the stability of generated profiles over different
platforms as this influences the classifier accuracy.

In our experiment we ran the three applications on 3 host machines, each
one configured with the following operating systems: Ubuntu 18.04, CentOS 7
and Debian GNU Linux 9. For each application, the container is running 5
times with the same training data set. We then calculated the cross entropy for
all application profiles produced in one OS and the cross entropy for pairwise
comparison of application profiles in different OSs.

Figure 4.5: Stability of the profiles, expressed as cross entropy, for 3 model appli-
cations over execution platforms running three OSs: Ubuntu, Debian and Cen-
tOS.

As shown in Figure 4.5, there are in total of 6 groups of boxes. Each group
contains the results for the runs of the same application: application 1 in red, ap-
plication 2 in black and application 3 in blue. The 3 groups on the right show the

4.7. Stability of proposed methodology 75

values of cross entropy of the three application’s profiles generated on machines
with a specific OS. The 3 groups on the left show the cross-platform variance of
the profiles for the same application when running on two host machines with a
different OS.

Not surprisingly, we observe that the variance among different platforms is
application-dependent. According to Figure 4.5, the profiles of application 2
suffers from more variance compared to the other two. One explanation is that
application 2 is more resource intensive and that more device management system
calls are inserted into the program behavioral traces. This generates more rarely
occurring n-grams that contribute to higher variance. Also, we can observe that
Debian GNU Linux 9 provides the most stable profiles for all 3 applications.

When we compare the variances for runs in the same OSs, with values ranging
from 0 to 0.27, to the runs with different OSs pairs, with values ranging from 0 to
0.34, the cross-platform variance is only slightly larger. In addition, as shown in
Table 4.3, the mutual distances among the 3 applications are 5.21 (APP1- APP2),
1.42 (APP1 -APP3) and 4.81 (APP2 - APP3). The absolute values of the variance
cross platforms are smaller than the mutual distances. This indicates the variance
of profiles over different platform os is unlikely to cause false negatives. The results
strongly suggest that our proposed methodology will support container portability
with quite stable performance, at least for typical DDM ML algorithms.

4.7.2 Stability over different training data sets
Not only it is important to determine the stability of profiles across OS-es, it
is likewise essential to investigate the stability over different training data sets.
There are two reasons for this. First, to reduce the risk of data leakage in a
DDM, the authorized party is not allowed to access the data objects directly and
to execute the compute algorithm on them. This means that the data used to
generate the profile in the authorized party is normally different from the one
used for classification in the execution platform. Secondly, a DDM customer may
retrain a machine learning model multiple times with different training data sets
for higher accuracy.

To determine the stability of each application in this case we trained the
ML model with the data set shown in Table 4.4. The operating system of the
host machine we used is Ubuntu 18.04. We chose this for its wide adoption in
DDMs. For each application there are 5 training data sets of various sizes. The
application containers are running 5 times with every training data set. At the
end, we obtain 25 trace files for each application.

Figure 4.6 shows the stability of the application profiles expressed as cross en-
tropy values for all pairs in the Cartesian product of the tracefile set. The cross
entropy between profiles of the same application is small, in the large majority
of cases with values lower 0.1. In particular, the profiles of application 1 are
the most stable across the 5 training data sets, and the cross entropy has values

76 Chapter 4. Policy compliance detection with syscall profiling

App1 App2 App3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cr
os

s e
nt

ro
py

Figure 4.6: Stability of the three model application profiles over all data sets in
Table 4.4 expressed as cross entropy.

ranging from 0 to 0.15 including outliers. Application 2 and 3 have a few outliers
with cross entropy higher than 0.1. In particular application 2 has 12 outliers
of relatively high entropy values, ranging from 0.17 to 0.7. As explained in Sec-
tion 4.7.1 this is because more device management system calls are generated in
this case and inserted into the program behavioral traces. Outliers decrease the
classification accuracy rate.

From our two experiments, stability over different OSs and stability over dif-
ferent data sets, we can conclude that profiles are fairly closely clustered together,
as seen by the low value of cross entropy. This means that we expect that our
classification methodology will be able to deliver good results independently from
the OSs and training data set the reference profiles has been generated with.

4.8 Classification accuracy
In this section, we will investigate how well our proposed classifier works for
distinguishing containerized applications. First we will describe our experiments
and then present our results.

4.8.1 Procedure
To estimate the accuracy rate of our methodology, we will choose one profile per
application to be the reference profile, which is a real life scenario would be the
one produced by an authorized party. We will then present to the classifier profiles
from a specific application and determine if it correctly identifies the application.

4.8. Classification accuracy 77

As shown in Table 4.3, application 4 uses distinct libraries and it has larger
distances to all other 6 applications. we will therefore not consider it further in
our experiment, as we expect to be always distinguishable.

The tracefile database T we use contains 45 tracefiles for all the other 6 ap-
plications running with different configurations - OS and training data set. We
denote the tracefile database for application k as Tk.

The procedure we follow is shown in Algorithm 4.1. We first input the tracefile
database T in line 1. We run the experiment for R times and we will have different
authorized profiles in each iteration. From line 3 to line 7, we randomly select a
tracefile from each application tracefile database Tk and compute the authorized
profile pA,k for the specific iteration. Then we input all tracefiles in T into the
classifier, excluding those used for generating pA,k. From line 8 to 15, we classify
each tracefile into an application category with the shortest distance principle.
Finally, from line 16 to 24, we compare the determined result with the tracefile
label and compute the accuracy rate for R rounds.

Algorithm 4.1 Classification accuracy procedure
1: T ← Tracefile database
2: for r = 1,2, · · · ,R do
3: for Tk ∈ T do
4: Randomly choose a tracefile trk

j ∈ Tk

5: tra,k← trk
j

6: Generate authorized profile pA,k for tra,k

7: end for
8: for trm ∈ T do
9: if trm ∈ {trA,1, trA,2, trA,3} then

10: Go to 8
11: end if
12: Generate profile pm for trm

13: for k = 1,2, · · · ,K do
14: Cm,k← cross entropy(pm,pA,k)
15: KD,m = argmink

{
Cm,1,Cm,2, · · · ,Cm,K

}
16: if KD,m = k then
17: PDpos+ = 1
18: else
19: PDneg+ = 1
20: end if
21: Ra = P Dpos

P Dpos+P Dneg

22: end for
23: end for
24: end for

78 Chapter 4. Policy compliance detection with syscall profiling

4.8.2 Results
Table 4.5 shows the accuracy confusion matrix of the classifier for 6 containerized
ML algorithms for R = 40. In each row we report the classification result of
the specific application. The last column shows the mean value and standard
variation of classification accuracy rates for application k among 40 rounds.

Table 4.5: The confusion matrix of the classifier for 6 applications running with
various platform OSs and training data sets.

APP 1 APP 2 APP 3 APP 5 APP 6 APP 7 mean (%) ± std
APP 1 1529 0 209 0 22 0 86.7 ± 0.15
APP 2 0 1760 0 0 0 0 100 ± 0
APP 3 0 0 1623 137 0 0 92.2 ± 0.15
APP 5 0 0 61 1483 216 0 84.2 ± 0.21
APP 6 0 0 0 0 1760 0 100 ± 0
APP 7 0 0 0 0 0 1760 100 ± 0

93.85

We can observe that the classifier can always achieve an accuracy rate of 100%
for App2, App6 and App7 no matter how we built the authorized profiles. The
prediction accuracy is only 86.7% for App1, with 209 samples classified as App3
and 22 samples classified as App6. False classifications mainly occur between
App3 and App5, App5 and App6. This is because of their mutual distance, as
shown in Table 4.3, are only 0.38 and 0.58. For those applications with lower
average classification accuracy, App1, App3 and App5, the std is also higher.
This indicates that the selection of authorized profiles plays an important role
in the performance of the classifier. The classifier can predict profiles with 100%
accuracy for some applications sharing the same libraries and overall accuracy for
all applications is as high as 93.85%.

4.9 Discussion
The work presented so far mainly focuses on distinguishing applications run-
ning inside the containers based on system call monitoring. We must stress our
methodology is not concerned with the maliciousness of the code. The focus is on
whether the code is authorized to run. Detecting malicious code and intrusions
in real time is out of the scope for the current paper, but we will extend our
architecture in Fig. 4.1 to include this as a separate component.

The performance of our proposed methodology is lower for applications that
are pretty similar to each other. It will be a focus of our future work to determine
if more fine-grained classifiers, namely Support Vector Machine (SVM), Decision

4.10. Related work 79

Tree, KNN(K-nearest neighbour), can improve the current classification accuracy.
These more refined methods require many more tracefiles than the ones we cur-
rently. Still, in many DDMs this larger data set tracefiles is difficult to collect,
hence our methods will still be the one adopted, and we believe deliver more than
sufficient discrimination power, as seen by its overall accuracy of 93.85%.

Another interesting aspect to consider is the effect of the tracefile size, i.e.
the number of distinct n-grams contained in it. As we can see from Table 4.2
the six applications we chose produce tracefiles which contain between 1140 and
5941 distinct n-grams. When we look at Table 4.5 we can see that there is no
obvious correlation between number of n-grams and accuracy, which is also a
good performance indicator for the suitability of our method as it is application
size agnostic.

4.10 Related work

There are recent studies modelling program behaviour with system calls. The
work in [55] proposed to use frequency of individual system calls to build the nor-
mal profiles of an application. Such profiles may lose some important information
about the application behaviours because they do not capture the sequential re-
lationships among systems calls. In addition, this method is vulnerable to mimic
attacks. Exploiting the profiles, the adversaries can mimic the benign program
to perform malicious actions [48]. [46] proposed to profile normal behaviours of
a running process as a set of short sequences of system calls. The profile is an
enumeration of all fixed-length subsequence and an anomaly is flagged if a suffi-
cient number of new short subsequences occur. [56] proposed a similar version of
program profiling methodology, which is called STIDE. In this case the authors
use Hamming distances to calculate the dissimilarities to detect anomalies. These
works provide us with a good starting base for our research.

[57] proposed in their recent work to use Hidden Markov Chain to model
normal behaviours of applications. The work in [49] proposed to train an LSTM
model with benign behaviours of a running program. However, those methods
are very computationally expensive and require a large amount of data.

The work in [58] aimed to analyse Android App behaviours using system
calls. They built the App profile based on the frequency distribution of individual
system calls. Their conclusion was that system calls are not sufficient to classify
application behaviour. In our work we will demonstrate that this possible as
long as the profiling methodology is more refined than the one adopted by these
authors.

80 Chapter 4. Policy compliance detection with syscall profiling

4.11 Conclusions and future works
In this chapter, we introduced architecture to distinguish algorithms running
inside containers by monitoring system calls during the execution stage. We
proposed to profile a containerised algorithm with n-gram occurrence distribution
and compute dissimilarity with Laplace smoothing and cross entropy. With our
experimental results, we demonstrated that the methodology allows profile reuse
across execution platforms with different OSs to support container portability
and profile reuse across different datasets to allow retraining. We showed that we
could gain high classification accuracy with typical ML applications.

In Chapter 5, we further extend our architecture to include intrusion detection
modules. This allows us to distinguish an algorithm as being authorised or not,
and determine its behaviour at runtime.

Chapter 5
Real time intrusion detection systems

The collaborating parties, especially the data providers, normally are concerned
about the security of their outsourced data. The pre-agreed policy normally
contains rules to forbid data leakage and data modification during the execution
stage, which are also threats we identified in Chapter 3. The DDM infrastruc-
tures should have the capacity to help enforce such policy rules. In this chapter,
we extend the architecture described in Chapter 4 and introduce a real time
intrusion detection system(IDS) that monitors the system calls of a running
container based on the one-class support vector machine (OC-SVM) algorithm.
We also investigate the influence of various feature extraction methods, kernel
functions and segmentation length with four metrics. Same as in Chapter 4, this
chapter contributes to answer RQ3.

This chapter is based on:

• Lu Zhang, Reginald Cushing, Cees de Laat, and Paola Grosso. “A
real-time intrusion detection system based on OC-SVM for container-
ized applications.” In 2021 IEEE 24th International Conference on
Computational Science and Engineering (CSE), pp. 138-145. IEEE,
2021.

5.1 Introduction
In a DDM, there is a unique identifier for each data and compute object. The
parties agree on permissible actions on specific data and compute objects and
express them into a policy [59]. The compute objects are containerised for better
portability. The DDM infrastructure implements policy enforcement components
to mitigate possible vulnerabilities faced by such data exchange applications,
such as container escalation attack [60]. Preventive countermeasures must be

81

82 Chapter 5. Real time intrusion detection systems

implemented as the first line of defence. However, attackers will keep developing
novel techniques to bypass the existing security mechanisms. Hence, a real-time
intrusion detection system (IDS) is essential to enhance the operations of such
digital infrastructures.

An IDS can be mainly classified into two categories, namely, signature-based
and anomaly-based. The signature-based IDS detects attacks by matching the
monitoring metrics with existing patterns. Consequently, it can not identify zero-
day attacks. An anomaly-based IDS learns a profile describing normal behaviours
and flags a potential attack if a sufficient deviation from the normal profile occurs
[61].

We propose a hybrid real-time intrusion detection system with system calls
generated by a running container. We adopt the One-Class Support Vector Ma-
chine (OC-SVM) as the anomaly detection algorithm due to its capability to deal
with complex non-linear problems. To detect malicious behaviours in a real-time
manner, the streaming system calls are separated into segments before being
mapped into feature vectors. Then we apply the signature-based methodology to
reduce false alarms. An anomaly detection algorithm is trained For each com-
pute object if used for the first time. Adapting to the dynamic characteristics of
the application behaviour, the anomaly detection algorithm is retrained whenever
new data is available. It is vital to ensure that both training and retraining data
are attack-free. In our proposed system, the training data is collected in a secured
environment and retraining data is analysed and sanitised.

We also evaluate how the OC-SVM algorithm works for detecting anoma-
lies with system call traces. The performance highly depends on the statistical
distribution of the attack traces and modern attacks are more difficult to distin-
guish [62]. We construct a new dataset including system call traces of modern
container-specific attacks and adversarial ML attacks. Three numeric metrics are
measured to evaluate the performance, namely, True Positive Rate (TPR), False
Positive Rate (FPR) and Area under the ROC curve (AUC). We also investi-
gate how the different feature extraction methods, kernel functions, segmentation
lengths, influence the IDS performance.

The rest of this chapter is organised as follows. We present our proposed
system architecture in Section 5.2. The details of the Detection Engine (DE)
are explained in Section 5.3. Section 5.4 and Section 5.5 present the constructed
dataset and the experimental setups. We introduce our results, analysis and
discussions in Section 5.6 and Section5.7. In Section 5.8 we compare our method-
ology with existing ones. In Section 5.9, we introduce the conclusions of this
chapter.

5.2. System description 83

5.2 System description
Figure 5.1 describes the architecture of our proposed real-time intrusion detec-
tion system based on OC-SVM. In general, the training stage is conducted offline
in a secured environment, a authorized party, in a centralized manner and then
distributed to the endpoint execution platform, for real time anomaly detection.
The centralized authorized party consists of an Initial Training module, an In-
tegrity Verification and Retraining module and a Model Database. The Endpoint
Execution Platform contains a System Call Monitoring module and a Decision
Engine.

Pre-
processing

Anomaly
Detection

Anomaly
Analysis

Decision Engine (DE)

Model

System
Call

System Call Monitoring

\

Container

Endpoint Execution Platform

Centralised Authorised Party

Integrity Verification
and Retraining

System Call

Attack Database

Model Database

+Hash COMPUTE
+Hash POLICY

Code Verification

Initial Training Dataset Generation

Train Model

Initial Training

Compute Algorithm

Policy

Figure 5.1: The architecture of the intrusion detection system.

Before delegating a data exchange application to a DDM, the collaborating
parties first agree on a policy describing permissible actions on the data and com-
pute objects. The policy and compute objects are sent to a trustworthy authorized
party. The security experts check the source code manually and verify whether it
complies with the policy. Then the authorized party generates the initial training
data and trains the anomaly detection algorithm. This ensures that the training
data is clean and not contaminated by adversaries. Both the pre-trained detection
model and verified compute objects are sent to the endpoint execution platform
via a secured communication channel. The authorized party signs and encrypts
the pre-trained detection model and the compute object, normally a container
image, with the public key of the endpoint execution platform to ensure integrity.

On the endpoint execution platform, the containerized compute object may

84 Chapter 5. Real time intrusion detection systems

perform operations on the data objects agreed in the policy. The system call
monitoring module gathers the system call traces with Sysdig. It sends the
streaming system calls to the Detection Engine module. This module detects
anomalies with the pre-trained OC-SVM model and decides whether it is neces-
sary to apply countermeasures. The details of this module will be discussed in
Section 5.3.

In the meantime, the System Call Monitoring module also sends the system
calls back to the authorized party for model retraining if needed. The behaviors
of some applications are dynamic in nature, so it is necessary to retrain the
model periodically. The Integrity Verification and Retraining module checks the
integrity of the received system call traces and verifies whether they are attack
free. The same anomaly detection model, with exactly the same parameters, is
run in parallel with the received streaming system call traces in the authorized
party. The receiving system calls are recognized as attack-free if the alarm rate is
close to the recorded FPR value of this model in the initial training. Then these
system call traces are allowed to retrain the model. We adopt this mechanism to
reduce the likelihood that the model is retrained with contaminated samples.

5.3 Detection engine
The Detection Engine (DE) is comprised of three components: a Pre-Processing
Module, an Anomaly Detection module and an Anomaly Analysis model.

5.3.1 Pre-processing module
When the container runs, the System Call Monitoring module captures the sys-
tem calls and passes them to the Pre-processing module. This divides the stream-
ing system calls into segments with a fixed window size: this is needed because
the inputs of the classic ML algorithms are fixed length vectors. Furthermore
this segmentation allows us to perform our detection while the systems calls are
coming in real time.

The Pre-Processing module also maps these segments system call traces into
vectors in the feature space. In our work we considered three feature extraction
methods, namely tf, tf-idf and ngram. We will describe them in more detail in
Section 5.5.2

5.3.2 Anomaly detection module
A pre-trained IDS learning algorithm is running in the Anomaly Detection mod-
ule and determines whether an input feature vector is anomalous or not. Here
we adopted One-class Support Vector Machine (OC-SVM) as the IDS learning
algorithm. Our choice stems from the fact that OC-SVM is good at dealing with

5.3. Detection engine 85

complex non-linear problems. This results in it being widely used for intrusion
detection systems [63].

The general idea of an SVM algorithm is to find a hyperplane that separates
the normal and abnormal data points with a maximized geometry margin by
solving an optimization problem. It maps the input data points into a new feature
space of higher or even infinite dimensions with kernel functions. Therefore, the
original linearly non-separable data patterns may be converted into, with high
likelihood, linearly separable patterns in the high dimensional space [64].

Similar to standard SVM, the OC-SVM also aims to find a decision boundary
with a maximum geometry margin [65]. However, it is an unsupervised learning
algorithm and does not require any labeled training data. This is suitable for
usage in anomaly detection, where training datasets are normally unbalanced.
The OC-SVM algorithm considers the anomalous data points to be close to the
origin, while the normal data points are far from the origin. It uses a spherical
decision boundary instead of a plane in the higher-dimension feature space [66].
The algorithm aims to find a sphere with minimal volume that contains the most
normal data points. The objective function is:

min
R,⃗a

R2 +C
N∑

i=1
ξi

subject to :∥∥Φ(Xi)− a⃗
∥∥ ⩽ R2 + ξi, for i = 1,2, · · · ,N

ξi ≥ 0, for i = 1,2, · · · ,N

(5.1)

The spherical decision boundary is characterized with its center a⃗ and the
radius R. Xi is the ith training data in input space I and N is the total number
of training samples. Φ() denotes a feature map from the input space I to a high-
dimensional feature space F . ξi is a slack variable to prevent over-fitting from
some noisy data points by creating a soft margin. It allows some data points to
lie within the margin. C is a constant to determine the trade-off between the
sphere volume and the number of data points it can hold.

A kernel function is defined as:

K(Xi,Xj) = Φ(Xi) ·Φ(Xj)T (5.2)

Given two data points Xi,Xj , the output of the kernel function is the dot
product of their mapping in new space F . As the decision boundary of an SVM
algorithm only relies on the dot product in feature space F, the explicit projection
is not necessary. In our work, we chose two popular kernels, linear and Gaussian,
to evaluate the performance of our system. The details will be discussed in section
5.5.3.

86 Chapter 5. Real time intrusion detection systems

5.3.3 Anomaly analysis module

The Anomaly Analysis module analyses the anomalies identified by the Anomaly
Detection module and provides information to the security experts determining
whether to take countermeasures or not. For an input segment tracefile, which is
flagged as an anomaly, this module conducts the following operations:

• Match the system call sequences with existing attack database;

• Check the neighboring segments of system call traces and determine whether
this is a standalone anomaly or not;

An identified anomaly is recognized as standalone if all the data points in the
neighboring area (Ns points before and Ns points after) are identified as normal.
Ns is an adjustable parameter to define the range of the neighboring area of a
data point. The Anomaly Analysis module assigns each anomaly a level based
on the outcomes of the above operations. An anomaly is marked as ’High’ if
the traces match any existing attack in the database. An anomaly is marked
as ”Low” if it is a standalone point. The remains are marked as ”Medium”.
The detailed matching approach and its performance has been explained in our
previous paper [67]. The effectiveness of recognizing standalone points will be
discussed in Section 5.7.

5.4 Experimental dataset construction

The emerging microservices pose many challenges for real-time intrusion detec-
tion systems, due to their highly dynamic natures. Also, the performance of IDS
learning algorithms highly depends on the statistical properties of the training
dataset. When starting our evaluation we found out that there are currently no
public databases containing system call traces of container-specific applications
or attacks. We therefore set out to construct our own training dataset, in or-
der to validate how oc-svm works for detecting modern attacks for containerized
applications.

To tailor our work to the DDMs we first identified the most typical applications
expected to run in such environments: databases services and training machine
learning models are the most likely type of use cases. The former are examples
of dynamic applications with many users interacting with the system; the latter
are more static applications that do not have many users involved and have a
more constant execution path every time. For each one of them we implement an
attack with penetration tools which provides us with a suitable dataset.

5.4. Experimental dataset construction 87

5.4.1 Dynamic applications: CouchDB and MongoDB

As example of dynamic applications we select two NoSQLMap databases,
CouchDB and MongoDB, to investigate the performance of the proposed intru-
sion detection system.

Figure 5.2: Platform for generation of normal and abnormal traces for dynamic
applications (CouchDB and MongoDB).

Figure 5.2 shows the experimental platform we built for generating normal
and abnormal system call traces. To avoid the inferences of other user activities,
we set up a Docker container running CouchDB or MongoDB server in a virtual
machine (VM1). Sysdig is implemented in the kernel space to collect system call
traces generated by the running container. To simulate the dynamic behaviors
of real-world database users, we send requests to the container from the same
virtual machine (VM1). This is conducted with Apache JMeter, which is an
open-source workload generation tool. For abnormal traces, we conduct attacks
with exploitation tools, e.g Nmap and Metasploit, in another virtual machine
(VM2).

For CouchDB, we use the HTTP sampler of JMeter. This sampler enables
choosing the proper HTTP traffic types, e.g GET or POST. For MongoDB we
use JSR 223 Sampler of JMeter to generate the traffic. Web requests are sent
to the server to induce database operations. For each application, there are two
threads in JMeter, thread 1 and thread 2, which send requests to the container-
ized server simultaneously. Thread 1 includes 100 users, who perform operations
of inquiring documents and basic information in different databases. Thread 2
includes 3 users, who perform operations including updating, creating and delet-
ing databases. While JMeter is generating dynamic traffic, Sysdig monitors the
system calls of the server container, which is used as the normal traces of the ap-
plication. Table 5.1 shows the information of the performed attacks and tracefile
sizes for the two dynamic applications.

88 Chapter 5. Real time intrusion detection systems

Table 5.1: Applications and attacks of the constructed dataset for the two dy-
namic applications

Application Attack Exploitation Tool Jmeter Sampler # Syscall Symbols
Normal Abnormal

CouchDB Container Escalation Metasploit HTTP 7458046 5199817
MongoDB Brute Force Nmap JSR 223 40463150 4449052

5.4.2 Static application: machine learning applications
Another common application for DDM is to train a ML learning model with
data from multiple parties. We chose image classification with Concurrent Neural
Networks (CNN) with MINST dataset to validate the performance of our anomaly
detection system.

Recent research shows that deep learning algorithms are vulnerable to ad-
versarial attacks. [68]. This attack generates adversarial training samples in
the runtime. The adversarial samples are nearly unnoticeable for humans but
can fool the model with high confidence. There are a number of adversarial
sample generation approaches in the literature [69]. Concretely, we adopted the
Projected Gradient Descent (PGD), Basic Iterative Method (BIM), Carlini and
Wagner (CW), Fast Adaptive Boundary (FAB), multiple steps fast gradient sym-
bol method (MIFGSM), PGDDLR, Square and TPGD method to generate ad-
versarial samples [70].

The ML algorithms is encapsulated with a Docker container. For normal
traces of the application, Sysdig collects system calls for the entire training stage.
For abnormal traces, Sysdig gathers system calls when the block of code, which
generates the adversarial samples, is executed. Table 5.2 shows the information
of the performed attacks and tracefile size for the image classification application.

5.5 Experimental design
In this section, we implement the proposed architecture and evaluate its perfor-
mance. The key question we want to answer is: How does the OC-SVM based DE
perform for detecting modern attacks?

More precisely, we want to investigate the influence of different feature ex-
traction methods, different kernel functions and different segmentation lengths.

The experiments are conducted with the dataset discussed in Section 5.4. OC-
SVM is an unsupervised learning algorithm; the model is trained with only normal
data and tested with both normal and abnormal data. To avoid over-fitting, in
our experiments we use K-fold (K = 10) cross validation. We first shuffle the
normal data points randomly and split them into K folds. For each interaction

5.5. Experimental design 89

Table 5.2: Applications and attacks of the constructed dataset for the ML static
application

Application Attacks Exploitation Tool # Syscall Symbols
Normal Abnormal

Image Classification

AML: PGD

Proof of Concept 2798258

4360000
AML: BIM 960967
AML: CW 4728113
AML: FAB 1394676
AML: MIFGSM 118007
AML: PGDDLR 466024
AML: Square 182813
AML: TPGD 87884

k ∈ J1,KK, one fold of the normal data points and all the abnormal data points
are used for testing. The remaining 9 folds are used for training the model. After
K interactions, every fold has been used once for testing. The final value of the
evaluation metric is the average of K values [71].

We deployed our experiments in a VM equipped with 4 CPU cores at 2.9 GHz
and 16 GB memory. The OS is Ubuntu 18.04 LTS, kernel 4.15.0.

5.5.1 Segmentation length
As already discussed in Section 5.2, the streaming system calls are divided
into segments to achieve detection results in the real time. The window
size that segments the trace is called segmentation length and denoted as Ls.
Hence a trace of L system call symbols can be spit into ⌊L/Ls⌋ + 1 seg-
ments. To investigate the influence of different segmentation lengths, we set
Ls ∈ {1000,2000,5000,10000,15000,20000,25000,30000,50000}.

5.5.2 Feature extraction
Three feature extraction methods are used in our experiment, namely term-
frequency (tf), term frequency-inverse document frequency (tf-idf) and ngram.
We use S to denote a system call symbol, Ts to denote the trace of a segment.
tf(S,Ts) denotes the weight of symbol s in trace Ts and is computed as the
occurrence frequency.

tf(S,Ts) = count of symbol S inTs

count of systemcalls inTs
(5.3)

90 Chapter 5. Real time intrusion detection systems

tf-idf also considers how rare a system call symbol occurs in an entire trace
set. We use T to represent the entire trace set and NT to represent the total
number of traces in T . The tf-idf of a symbol s is the product of term-frequency
and the inverse-document frequency of that symbol.

tfidf(s,Ts,T)) = tf(s,Ts) · idf(s,T)

idf(s,T) = log(NT

count(Ts ∈ T : s ∈ Ts)+1)
(5.4)

ngram captures the sequential information of system call traces. A trace is
divided into fixed length sub-sequences, called n-grams, with a sliding window of
length n. The feature vector is essentially the distinct n-grams weighted by their
occurrence frequency. In our experiment, we use n equal to 3.

5.5.3 Kernel functions
We use two kernel functions for the OC-SVM learning algorithm in our exper-
iment, namely linear and Gaussian. As described in Equation 5.2, the kernel
function computes the dot product of two feature vectors in feature space F with
a function of vectors in input space I. Let Xi and Xj be two feature vectors in
input space I. The linear kernel is simply the dot production of Xi and Xj .

K(Xi,Xj) = Xi · (Xj)T (5.5)

The Gaussian kernel is computed as following:

K(Xi,Xj) = exp(−

∥∥∥Xi−Xj

∥∥∥2

2σ2) (5.6)

5.5.4 Evaluation metrics
To evaluate the performance of the DE, we measure four metrics, namely true
positive rate (TPR), false positive rate (FPR), area under the ROC curve (AUC)
and execution time.

The values of TPR and FPR are calculated as following:

TPR = TP

TP +FN
(5.7)

FPR = FP

TP +FP
(5.8)

TP (true positive) indicates the number of anomalies that are classified cor-
rectly. FN (false negative) indicates the number of anomalies that are not detected
by the classifier. FP (false positive) represents the number of normal samples that
are classified as anomalies.

5.6. Performance of anomaly detection module 91

A ROC curve is a graphical plot that illustrates the performance of a classifier
with different discrimination thresholds. This curve plots TPR (y-axis) against
FPR (x-axis). The OC-SVM algorithm essentially does not provide any proba-
bility score. In the experiment, we approximate the score as a function of the
distance from the input data point to the decision boundary. AUC measures the
total 2-dimensional area under the ROC curve. It summaries the information of
the ROC curve and measures the capability of a classifier to distinguish between
positive and negative classes. The higher the AUC value, the better performance
a classifier can achieve. The AUC value ranges from 0 to 1 and the classifier is
perfect if AUC = 1.

5.6 Performance of anomaly detection module
We focused our attention to the evaluation metrics, namely TPR, FPR, AUC and
execution time, of the Anomaly Detection module. In Figure 5.3 we show their
values for different kernels and feature vectors as function of the segmentation
lengths. In Table 5.3 we evaluate the same metrics for different applications and
attacks.

Comparison among different segmentation length

The choice of a specific segmentation length is part of the DE configuration and
it is important for us to determine what is the impact of its value.

As shown in Figure 5.3, both TPR and FPR values show a growing trend
with larger segmentation length values for all applications and features. The TPR
converges at a specific point with a value close to or equal to 1. The performance
of the Anomaly Detection model degrades with higher FPR if the segmentation
length exceeds that point. The performance of the DE degrades significantly with
an improper segmentation length, particularly in the region of lower values. It is
therefore vital to choose the most appropriate value.

We observe that there is a segmentation length which can provide optimal
performance for the module. According to the experimental results of the three
applications we used, the optimal segmentation length is 30000.

Comparison among different features and kernels

As seen in Figure 5.3, the feature tfidf performs significantly worse than the
ngram and tf features for all applications. In the worst case, the FPR values can
be as high as 0.78, 0.91, 0.92 and the TPR values can be as low as 0.38, 0.42,
0.15 for CouchDB, MongoDB and Image Classification respectively. This is not
an acceptable performance of an IDS and there are two possible explanations.
Firstly, we must observe that the idf factor is extracted from only the training
dataset to avoid information leakage. A distortion will occur when applying it

92 Chapter 5. Real time intrusion detection systems

(a) CouchDB and Arbitrary Code Execu-
tion Attack

(b) MongoDB and Brute Force Attack

(c) Image Classification and Adversarial
ML Attack (PCA)

(d) Execution Time

Figure 5.3: The FPR and TPR values (Figure 5.3b, 5.3a, 5.3c) and execution
time (Figure 5.3d) of the OC-SVM with different segmentation lengths, features
and kernel functions. The TPR values are shown as circles and the FPR values
are shown as crosses.

5.6. Performance of anomaly detection module 93

to the testing dataset, especially for the abnormal data. Secondly, our results
indicate that the rareness of a syscall symbol across traces in the entire dataset
(measured with idf) is not an effective indicator for real anomalies (intrusions).

ngram and tf produce nearly identical results along various segmentation
lengths for a given kernel.

To determine the preferred feature vector we focused our attention to the ex-
ecution for both of them. Figure 5.3d illustrates the execution time of training
the model with ngram and tf features for all 3 applications with the ideal seg-
mentation lengt of 30000. The execution time includes parsing the raw traces,
extracting features, training and testing the model. The Image Classification
with feature tf and linear kernel takes minimum time and we use it as the basic
time unit T0 (T0 = 8.2s). All the execution times are represented as multiples of
T0. As shown in Figure 5.3d, ngram always takes a longer time compared to tf
for each application and the time difference is positively related to the number of
system call symbols (see Table 5.1 and Table 5.2).

Given our results, we can conclude that the feature tf is the best choice since
it provides almost the best detection performance with a lower workload.

The optimal kernel mainly depends on the spatial distribution of the normal
(application traces) and abnormal data points (attack traces) in the input space
I. Linear kernel works better if the data points are essentially linearly separable
and vice versa.

Comparison among applications and attacks

Table 5.3 summarizes the AUC, TPR and FPR values of the OC-SVM algorithm
for all applications and attacks described in Section 5.4. The OC-SVM model is
trained with tf feature extraction method and Gaussian kernel. The segmentation
length is set to 30000. We chose these parameters because they are the optimal
choices according to our discussion in Section 5.6 and Section 5.6.

The attacks arbitrary code execution and brute force performed on dynamic
applications are easier to detect. The DE is able to detect 100% of attacks at a
FPRof 6.7% for arbitrary code execution and 2% for brute force. The AUC values
can reach as high as 0.995 and 0.959.

It is more difficult to detect adversarial machine learning attacks because the
distinctions between normal and anomalous traces are weak. For the Image Clas-
sification application, the FPR is relatively high (12%). The TPR rate varies with
different adversarial sample generation methods. For PGD, MIFGSM, PGDDLR
and Square, 100% of the attacks can be detected. However, only 55% attacks of
TPGD can be caught by the DE of the IDS.

94 Chapter 5. Real time intrusion detection systems

Table 5.3: AUC, TPR, FPR values of different applications and attacks.

Application Attack AUC TPR FPR
CouchDB Execute Arbitrary Code 0.995 1 0.067
Mongodb Brute Force 0.959 1 0.020

Image Classification

PGD 0.917 1 0.12
BIM 0.949 0.972 0.12
CW 0.929 0.988 0.12
FAB 0.951 0.961 0.12
MIFGSM 0.851 1 0.12
PGDDLR 0.857 1 0.12
Square 0.858 1 0.12
TPGD 0.799 0.55 0.12

5.7 Performance of anomaly analysis module
We evaluated the effectiveness of the Anomaly Analysis module discussed in Sec-
tion 5.3.3. The Anomaly Analysis module recognizes the standalone anomalies
and we measured the TPR and FPR values before and after filtering out those
standalone anomalies. Figure 5.4 shows the metrics for different segmentation
lengths for the MongoDB application with feature tf and linear kernel.

Figure 5.4: The TPR and FPR values as function of the segmentation length
before and after filtering standalone anomalies in the case of the MongoDB ap-
plication with tf feature and linear kernel

As shown in Figure 5.4, the TPR values are equal to 1 for all segmentation

5.8. Related work 95

lengths before and after filtering. This indicates there is no additional performance
loss, in terms of TPR, after filtering.

The FPR values drop significantly. The original FPR ranges from 0.013 to
0.021 with various segmentation lengths. After filtering, the maximal FPR (with
segmentation length equal to 50000) is only 0.014. The values can even reach 0
when optimal segmentation length is chosen.

5.8 Related work
There is a large amount of literatures using system calls to detect potential ma-
licious behaviors.

The work in [56] was one of the first to use system call traces to characterize
the behaviors of a running program. It builds a dataset of normal behaviors
with a fixed length system call subsequences. After this, a test trace is identified
as anomalous if the number of mismatch subsequences exceeds a user-defined
threshold. The problem with this approach is that it lacks generalization and
consumes huge storage capacity. The work in [72] uses system call to model the
normal profiles as a Hidden Markov Chain (HMM), but tuning parameters of an
HMM is extremely time consuming.

Recently, machine learning techniques have started to also be widely used for
building anomaly-based IDS. The work in [73] proposes an IDS with K-nearest-
neighbor (KNN) algorithm and evaluates the performance with the DARPA
dataset. This approach does not require a separate profile for each program
but the detection accuracy for novel attacks is only 75%. The work in [74] uses
ngrams as feature vectors and compares multiple learning algorithms, namely,
Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Naive Bayes.
They evaluate the performance with the ADFA-LD public dataset and observed
that SVM outperforms the other two. There are also work that similarly to
ours use OC-SVM as underlying technique. [63] evaluates the performance of
the OC-SVM algorithm with different kernel functions also with the ADFA-LD
public dataset. The work shows that OC-SVM can gain satisfactory performance
with low computational cost. [75] proposes an OC-SVM based anomaly detection
system using frequency distribution of various length n-grams as the feature vec-
tor. They also conclude that OC-SVM outperforms sequential anomaly detection
models with the ADFA-LD dataset. However, both works fail to address the real
time requirement of modern IDS systems, which we do cover in our work.

5.9 Conclusions and future works
This chapter extends the policy non-compliance detection component with an
OC-SVM-based real time intrusion detection system that monitors and analyses

96 Chapter 5. Real time intrusion detection systems

system calls. For each uniquely identifiable compute object, an IDS model is
trained centrally in an authorised party and distributed to local nodes via a se-
cure channel. An anomaly analysis model was implemented to reduce false alarms
of the system. We demonstrated the detection capability with a customised at-
tack dataset. The dataset contains modern attacks, such as adversarial machine
learning attacks which modifies the data in the runtime and container escalation
attack, giving the attacker potential privilege to copy out or modify data.

The experimental results showed that the OC-SVM algorithm could success-
fully detect modern attacks with satisfactory FPR, ranging from 0.02 for the brute
force attack up to 0.12 for adversarial ML attacks. In addition, we observed that
the system gains the optimal performance with feature extraction method term-
frequency with TPR equal to one for large part of our attacks. Furthermore, the
choice of segmentation length is crucial. The system performance degrades signif-
icantly if the segmentation length is too small. For the applications, we examined
the optimal segmentation length is 30000 in terms of number of system call sym-
bols. In addition, we observed that the optimal kernel functions are application
dependent.

The proposed architecture can improve the policy enforcement capability of
digital infrastructures by effectively detecting whether the algorithm behaviour
complies to the policy or not. However, we noticed that the experimental results
are under the assumption that the training data of the OC-SVM based IDS is
completely clean. Collecting re-training data from end-point execution platforms
to adapt the dynamic properties of an algorithm may give external attackers
chances to inject malicious samples into the training dataset and degrade the
IDS’s performance. In Chapter 6, we further strengthen our architecture with a
sanitization module to mitigate such malicious injections.

Chapter 6

Defending against poisoning attacks for
IDS

Machine learning techniques are widely used to detect intrusions in the cyber
security field. In Chapter 5, we demonstrated that our proposed architecture
can effectively detect containerised attacks for policy-driven data exchange ap-
plications with an OC-SVM based IDS. However, most machine learning models
are vulnerable to poisoning attacks, in which malicious samples are injected into
the training dataset to manipulate the classifier’s performance. In this chapter,
we provide answers for our RQ4 by introducing a sanitization module in the
architecture. We evaluate the accuracy degradation of OC-SVM classifiers with
three different poisoning strategies with a public ADFA-LD dataset and a real
world dataset that we developed in Chapter 5. We also propose a sanitization
mechanism based on the DBSCAN clustering algorithm. The experimental
results show that the poisoning attacks can degrade the performance of the
OC-SVM classifier to a large degree and the proposed sanitization method can
filter out poisoned samples effectively for both datasets.

This chapter is based on:

• Lu Zhang, Reginald Cushing, Paola Gross. “Defending OC-SVM
based IDS from poisoning attacks.” In 5th IEEE Conference on De-
pendable and Secure Computing (IEEE DSC 2022)/The 4th Inter-
national Workshop on Secure Smart Societies in Next Generation
Networks (SECSOC 2022).

97

98 Chapter 6. Defending against poisoning attacks for IDS

6.1 Introduction
Machine learning (ML) techniques are increasingly being adopted in the security
domain, for example, in an IDS [76]. However, in an adversarial setting, the
adversary may inject specially crafted samples into the training data, which can
make the decision boundary severely deviate and cause classification errors [77].
In the real world, initial training data is collected from open datasets, and peri-
odic retraining is necessary. This may allow adversaries to carry out attacks by
poisoning this public data.

In the last chapter, we introduced a real-time IDS system based on the OC-
SVM algorithm by monitoring system calls to detect anomalous behaviours. Here
we ask ourselves the question: How is the OC-SVM based IDS resistant to the
poisoning attacks and how can we defend against them?

To answer this question, we first evaluate the performance degradation caused
by 3 poisoning strategies with two syscall datasets: the public ADFA-LD dataset
and a real-world dataset [78]. We construct tainted training datasets by injecting
adversarial samples with different poisoning attack strategies. We measure the
accuracy of the OC-SVM classifiers trained with the benign dataset and the
contaminated dataset, respectively.

Next, we propose a sanitization process based on the DBSCAN clustering
algorithm because it does not require any pre-knowledge of the normal data and
can separate clusters of any shape [79]. We evaluate the effectiveness of the
proposed methods and investigate the influences of different distance metrics
and dimensionality reduction techniques. We demonstrate that the sanitization
process achieves very good performance for all applications in both datasets.

The rest of the chapter is organised as follows. Section 6.2 introduces the
basic concepts and categories of adversarial machine learning attacks. Section
6.3 describes the 3 label flipping strategies we adopt to evaluate the performance
degradation. In Section 6.4, we present our proposed sanitization mechanism
based on the DBSCAN clustering algorithm. We further describe the experimen-
tal design to evaluate the performance degradation caused by various poisoning
strategies and corresponding improvement after applying proposed sanitization
mechanisms in Section 6.5. Section 6.6 analyses the experimental results. Section
6.7 discusses the influences of different distance metrics. Section 6.8 presents the
related work and Section 6.9 concludes the chapter.

6.2 Background
In poisoning attacks, the attacker adds adversarial samples to the training data
so that the ML model’s decision boundary can be manipulated. The adversarial
samples can be crafted either by flipping the labels, e.g. inject malicious samples
in the normal training set, or by distorting the training samples, e.g. adding de-

6.3. Poisoning strategies 99

liberately calculated noise to the feature vectors. The latter is commonly applied
and is more effective to ML models that deal with image data. In our work, where
we deal with time series data, we mainly focus on the label flipping attacks.

In our work, we use OC-SVM, an unsupervised learning algorithm where only
normal data is required for model training. The label flipping poisoning attacks
for unsupervised learning algorithms such as OC-SVM can be understood as the
strategies needed to select the malicious samples to inject under a predefined
cost. Nearest first label flipping, furthest first label flipping and optimization
label flipping are three commonly used poisoning attacks. We must note that
the last one, the optimization label flipping method, tries to find a combination
of malicious samples by solving an optimization problem. This optimization is
required because performing an exhaustive search for all possible combinations
is extremely computationally intensive and normally not feasible. In the next
section, we will describe only one specific type of optimization attack, ALFA,
because of its popularity.

6.3 Poisoning strategies

To evaluate the performance degradation, we use 3 poisoning strategies, nearest
first attack, furthest first attack and adversarial label flip attack (ALFA). All
the 3 attacks are white-box attacks, which means the adversary needs to know
the model parameters and feature extraction methods a-priori. In practice, it
is expected that the adversary’s capability is bounded, and we assume that the
attacker can only inject a limited number of malicious samples.

6.3.1 Nearest first attack

For the nearest first attack, the adversary first injects malicious samples which
have the smallest distances to the decision hyperplane of the OC-SVM classifier
in the feature space. These samples are normally hard to distinguish as they can
occur also in absence of an attack: either they are caused by incorrect labeling or
by the intrinsic classification error rate present in a ML-based IDS in the scenario
of model-retraining.

6.3.2 Furthest first attack

For the furthest first attack, the adversary first inserts malicious samples which
have the largest distances to the decision hyperplane in the feature space. This
strategy is intuitively most effective since it aims to shift the decision boundary
of an OC-SVM classifier to a big degree and is also computationally efficient.

100 Chapter 6. Defending against poisoning attacks for IDS

6.3.3 Adversarial label flips attack (ALFA)

The adversarial label flips attack (ALFA) poison strategy is an optimization label
flipping attack [80]. It aims to find adversarial samples that jointly deteriorate
the accuracy of a classifier to a maximal degree under a given cost. It adopts a
relaxed optimization framework that can achieve near-optimal results with less
computational effort. In ALFA, the optimization problem is decomposed into two
sub problems: a quadratic programming (QP) program and a linear programming
(LP) program. The QP program is used to compute a decision boundary of the
classier with the latest updated tainted training dataset. The LP program is
used to update the training dataset with maximal hinge error with respect to the
latest decision boundary. The ALFA algorithm devises an iterative approach to
minimize QP and LP alternatively. The process is repeated until convergence.
However, the proponents of this attack formulated an optimization framework
in the supervised setting. We adapt the framework to unsupervised learning
algorithms by changing the objective functions and the constraints in the LP
program.

6.4 The data sanitization with DBSCAN

6.4.1 The DBSCAN clustering algorithm

DBSCAN is a density-based clustering algorithm. It separates the data points
in the feature space into clusters and assigns to each point a label. The general
idea is to find areas that reach the minimum density level and are separated by
lower-density areas. [79]

The DBSCAN cluster algorithm is illustrated in Figure 6.1. Any data point is
assigned one of the 3 labels, which are core point in red, border point in blue and
outlier in green. In a DBSCAN cluster model there are 2 predefined parameters,
ϵ and minPts. ϵ defines the maximal distance between two points that can be
considered as neighbors. It is the radius of the circles in the Figure 6.1. The
distance measure can be arbitrary. minPts defines the threshold of neighbor
numbers that reaches a minimum density level. A point is labeled as a core point
if it has at least minPts neighboring points within the radius ϵ. A point is labeled
as a border point if it has less than minPts neighboring points within the radius
ϵ, but is the neighbor of any core point. Other points are labeled as outliers.

The choice of parameters ϵ and minPts has a direct influence on the DBSCAN
clustering algorithm’s performance, especially in high-dimensional data space [81].
We will describe how we chose parameters in our sanitization process with details
in section 6.4.2.

6.4. The data sanitization with DBSCAN 101

Core Points

Border Points

Outliers

Figure 6.1: The DBSCAN clustering algorithm.

6.4.2 Sanitization flowchart
There are multiple reasons for the adoption of the DBSCAN clustering algorithm
for sanitizing the training dataset against poisoning attacks. Firstly, it deals well
with nonlinear data. It can find non-linearly separable clusters of any shape,
while KNN and k-means cannot do this well. Secondly, the DBSCAN algorithm
does not require a priori knowledge of the normal data. On the one hand, we do
not need to specify the number of clusters as needed in other clustering mech-
anisms. On the other hand, we do not require normal data as for other outlier
detection mechanisms. It is not a trivial task to get quality-guaranteed normal
data, especially for the initial IDS training.

syscall traces

 preprocessing

DBSCAN clustering

If nr.cluster == 1 ? set an alarm

remove outliers

sanitised samples

parameters

distance metric

NO

YES

Figure 6.2: The flowchart of the sanitization process.

Figure 6.2 shows the flowchart of the sanitization process. The syscall traces

102 Chapter 6. Defending against poisoning attacks for IDS

and parameters are inputs of the sanitization process. To select proper parameters
ϵ and minPts, we conduct a grid search if any normal data is available. As
the feature vectors are normalized frequency distributions, the pairwise distances
normally lie in the interval between 0 and 1 for most popular distance metrics,
such as cross entropy and euclidean. The parameter minPts also reaches an upper
limit of the total number of available normal data points. We iterate combinations
of ϵ and minPts. Among all the combinations where the input normal points
end with a single cluster, we select the one with a relatively small ϵ value and
a moderate minPts value. We also investigate the parameter sensitivity over
different applications and distance metrics in section ??.

In the preprocessing module, the syscall traces are mapped to data points
in the feature space. Each trace is parsed and vectorized as the frequency dis-
tribution of the system call symbols. The algorithm performs dimensionality
reduction, if necessary, and computes pair-wise distances with the given distance
metric. In the DBSCAN clustering module, the algorithm separates the clusters
and labels each data point, either in the original feature space or in the space of
lower dimension. The sanitization process first checks the number of clusters. If
there is more than one cluster, the process sets an alarm and expert effort would
be required. Otherwise, the process removes all the outliers and generates the
sanitized samples in the original feature space.

6.5 Experiments and dataset
We design experiments to investigate the performance degradation of the OC-
SVM classifier due to poisoned training data and the effectiveness of the proposed
DBSCAN-based sanitization algorithm.

6.5.1 Dataset

Table 6.1: Applications and attacks of the public dataset and the real world
dataset.

Dataset Name Application Attacks Number of traces
Normal Attack

ADFA-LD public dataset Linux web server
Add user

833
91

Java meterpreter 125
Web shell 118

The real world dataset CouchDB Container escalation 248 173
MongoDB Brute force 1348 148

To perform the experiments we adopt two datasets of system call traces: a

6.5. Experiments and dataset 103

public dataset and a real world dataset. The ADFA-LD dataset is a bench-
mark dataset for evaluating anomaly detection systems of system call traces. It
was released recently and it incorporates the characteristics of modern attacks
[78]. In the ADFA-LD dataset, the normal system call traces are collected from
a contemporary Linux server and abnormal traces are generated by 6 types of
modern attacks. In our experimental evaluation, we choose 3 attacks, web shell,
java interpreter and add user. We also run the experiments with a real world
dataset, the DL4LD use case. We run two dynamic applications with Docker
containers: CouchDB and MongoDB. To emulate the dynamic behaviors of real-
world database users, we send requests to the container with Apache JMeter, an
open-source workload generation tool. We craft attacks with exploitation tools,
e.g Nmap and Metasploit, to generate abnormal traces. Table 6.1 describes the
detailed information of our two datasets: the corresponding applications, the
crafted attacks and the associated number of traces. In the real world dataset,
the monitored streaming traces are segmented with a fixed window size of 30000
syscall symbols, which was determined to be the optimal choice in our previous
work [82].

6.5.2 Experimental design
There are two goals in our experiments. On the one hand, we aim to investi-
gate the performance degradation of the OC-SVM based IDS with the poisoned
training dataset. We also compare different poisoning strategies described in sec-
tion 6.3. On the other hand, we try to explore the effectiveness of our proposed
defense mechanisms with various distance metrics and dimensionality reduction
methodologies.

Dataset split

We use the metric accuracy to evaluate the performance of a classifier. Accuracy
describes the proportion of correct predictions. It is computed as:

accuracy = Nr. correct predictions

Nr. total predictions
(6.1)

Figure 6.3 illustrates how we split the dataset to perform our evaluation.
First of all, each system call trace is vectorized to a fixed length vector with the
frequency distribution of all system call symbols. We call those feature vectors
samples. As shown in Table 6.1, a dataset includes normal and attack traces
for each application. Secondly, we split the normal samples into a train normal
dataset and a test normal dataset with a given ratio. In our experiment we set this
to 0.9. Thirdly, we randomly select attack samples to construct the test attack
dataset. To construct a balanced untainted test dataset, the number of samples
in the test attack dataset is equal to that of the test normal dataset. This means

104 Chapter 6. Defending against poisoning attacks for IDS

Figure 6.3: The experiment procedure to obtain the tainted and the filtered train-
ing dataset. The procedure consists of three operations (in green): vectorisation,
poisoning and sanitization which in terms generate the corresponding datasets.

the worst performance of the classifier is 50% consistent with a random guess.
With different poisoning strategies, the training normal dataset is tainted with a
number of deliberately selected malicious samples. We call the poisoned dataset
the tainted training dataset.

We limit the attacker’s capability so that they can only inject a specific portion
of malicious samples. Here we define the metric poison portion as the fraction of
the number of the malicious samples over the number of the benign samples:

poisonportion = Nr.malicious training samples

Nr. benign training samples
(6.2)

In our experiment, we choose the poison portion in the range 0.05 - 0.2.

Performance degradation and improvement

To evaluate the performance degradation, we first train the OC-SVM classifier
with the train normal dataset and compute the accuracy with the untainted test
dataset. This indicates the original performance of the OC-SVM based syscall
IDS. Secondly, we train the OC-SVM classifier with the tainted training dataset
and test its performance also with the untainted test dataset. By comparing the
accuracy values achieved by the above two settings, we can numerically determine
the performance degradation.

To demonstrate the effectiveness of our proposed sanitization process, we train
the OC-SVM model with the filtered training dataset and test the classifier again
with the untainted test dataset.

Distance metrics

We also investigate the influence of different distance metrics on the performance
of the sanitization process. We adopt various distance metrics in the DBSCAN
clustering module in Figure 6.2 and compare the performance improvement.

6.6. Results analysis of performance degradation and improvement after sanitization105

Dimensionality reduction

Dimensionality reduction is conducted in the preprocessing module in Figure
6.2. The technique transforms data from a high-dimensional space into a low-
dimensional space so that the low-dimensional representation retains some mean-
ingful properties of the original data. We adopt two dimensionality reduction
techniques in our experiment: principal component analysis (PCA) and trun-
cated singular value decomposition (SVD). Then we compute the accuracy.

6.6 Results analysis of performance degradation
and improvement after sanitization

We investigate the performance degradation of the classifier with different poison-
ing strategies and the effectiveness of the sanitization process for both datasets.
We conduct experiments with the procedures explained in the section 6.5.2.
We use the Gaussian kernel to train the OC-SVM classifiers with two differ-
ent datasets [83]. In the DBSCAN clustering algorithm, we compute pairwise
distances between data points with Euclidean distance metric in the original fea-
ture space without any dimensionality reduction techniques. With the parameter
calculation method described in Section 6.4.2, we chose ϵ as 0.3 and minPts as
100 for both datasets.

Figure 6.4 and Figure 6.5 show the performances of the OC-SVM classifier
trained with the original dataset (in blue), the tainted training dataset (in orange)
and the filtered training dataset (in green) with different poison portion for the
public ADFA-LD dataset and the real world dataset respectively.

6.6.1 Performance degradation
We first focus on the blue and orange lines in Figure 6.4 and Figure 6.5 to investi-
gate the performance degradation. It is not surprising to notice that the accuracy
value decreases as the poison portion increases.

For both datasets, the furthest first attack always degrades the classifier per-
formance to the largest degree. It can deteriorate the accuracy to a value as low
as 0.5 already from a poison portion percentage of less than 0.1. The nearest first
attack shows performance degradation when the poison portion exceeds a thresh-
old, which depends on concrete applications and attacks. The accuracy for the
ALFA attack shows a decreasing trend but fluctuates. This behaviour is because
the algorithm computes a combination of adversarial samples with sub-optimal
choices. In fact, adversarial samples that were selected with a smaller poison
portion and that contributed to a big decision boundary shift may actually not
be selected again with a larger poison portion. According to our experimental
results, the ALFA attack strategy is not so good as expected when it is used in

106 Chapter 6. Defending against poisoning attacks for IDS

Figure 6.4: The plot of accuracy vs poison portion for the public ADFA-LD
syscall dataset of the OC-SVM based IDS. Each column corresponds to a specific
poisoning attack strategy: furthest first, nearest first and ALFA. Each row corre-
sponds to a specific attack in the dataset: Add user, Java meterpreter and Web
shell. and with sanitation process for the ADFA LD dataset. In each subplot, the
blue line represents the original performance of the classifier (without pure clean
training data), the green line represents the performance with tainted training
dataset of various poison portion and the red line represents the performance of
the classifier with proposed sanitization process.

the unsupervised learning scenario. A second reason is that this method is not
well suited for the data distribution of system call traces.

In short, the performance of an OC-SVM classifier can be significantly affected
by deliberately crafted malicious samples even when the poison portion is very
small. This can be considered as a serious vulnerability when applying the OC-
SVM based IDS in real world settings. From the attacker’s perspective, the
furthest first attack seems to be the optimal choice because it leads to a larger
accuracy degradation level with a lower computational effort.

6.6.2 The effectiveness of the sanitization process
Observing Figure 6.4 and Figure 6.5, we can conclude that the accuracy after
the sanitization process (green line) is pretty close the original accuracy of the
OC-SVM classifier (blue line) for all applications in both datasets. This indicates
that the tainted samples can be easily filtered out by the DBSCAN clustering
algorithm and that our method is effective regardless of the underlying data

6.6. Results analysis of performance degradation and improvement after sanitization107

Figure 6.5: The plot of accuracy vs poison portion for the real time syscall dataset
of the OC-SVM based IDS. Each column corresponds to a specific poisoning
attack strategy: furthest first, nearest first and ALFA. Each row corresponds to a
specific application in the dataset: CouchDB and MongoDB. In each subplot, the
blue line represents the original performance of the classifier (without pure clean
training data), the green line represents the performance with tainted training
dataset of various poison portion and the red line represents the performance of
the classifier with proposed sanitization process.

distribution patterns of applications and attacks.

We can also make a number of interesting and more specific observations.
First when there is a good separation between normal and abnormal data points
in the feature space of the syscall traces the original accuracy and the one after
sanitization are essentially the same, as seen in Figure 6.5 where the blue and
green line overlap. Second, it can occur that the accuracy after sanitization is even
slightly better than the original one. We see this for the Web shell attack in the
public ADFA-LD dataset, in the 3rd row in Figure 6.4. One possible explanation
is that the sanitation process can also filter out noisy points that do not follow the
distribution pattern of the general dataset. Third, we observe that different data
distribution patterns have a larger impact on the performance of the sanitization
process than the poisoning strategies themselves. This is visible in Figure 6.4
where the accuracy after sanitization is very similar on the same row, ie the same
application, more than in the same column, ie the same method. Finally, we
can observe that the accuracy of the OC-SVM classifier remains almost constant
when the poison portion increases for all settings in both datasets.

108 Chapter 6. Defending against poisoning attacks for IDS

Table 6.2: The chosen parameters (ϵ and minPts) of the sanitization process
with different distance metrics and applications.

Euclidean Cross Entropy Square Cosine Manhanttan Minkowski (order =3)
ADFA-LD dataset (0.3, 100) (0.81, 60) (0.21, 100) (0.41, 100) (0.71, 60) (0.31, 100)
The real world dataset (0.3, 100) (0.81, 60) (0.21, 100) (0.41, 100) (0.71, 60) (0.31, 100)

6.7 Influences of distance metrics and dimen-
sionality reduction techniques

We evaluate the influence of different distance metrics and dimensionality reduc-
tion techniques in the sanitization process and try to find the optimal choice for
the underlying data patterns for the system call traces.

With the strategies described before, the parameters of different distance met-
rics are shown in Table 6.2. We observe that the optimal parameters ϵ and minPts
vary over different distance metrics along the row but are the same among dif-
ferent applications and attacks. This indicates that we can adopt the historical
parameters of the same distance metric and expect good performance even if
there is not any normal training data available for a new specific application.

Figure 6.6: Performance improvement with different distance metrics for the
public dataset with Add user attack.

In Figure 6.6, we show the comparison results with 6 distance metrics for the
Add user attack in the ADFA-LD dataset.

Among all the distance metrics, Euclidean distance (blue) has the best per-
formance for all 3 label flipping strategies. The accuracy has a constant value of
0.84 as the poison portion increases, which is very close to the original value of
0.85. The cosine distance (brown) and Manhattan distance (pink) have similar

6.8. Related work 109

performance but contribute to lower accuracy values, which are about 0.84 and
0.76 respectively. This means those 3 distance metrics can represent the simi-
larities of data points, mapped by frequency distributions of syscall symbol, in
the feature space well. In addition they provide good separation between normal
and abnormal traces, with the Euclidean distance having the best capability to
distinguish between similar ones. The 3rd order Minkowski distance (grey) can
filter out samples that are far from the decision boundary. It leads to an accuracy
even higher than the original value when the poison portion is smaller than 0.1
for the furthest first attack and 0.075 for the ALFA attack. This is because the
3rd order polynomial over-stretches the larger values and over-shrinks the lower
values. The square distance (purple) and cross entropy(red) do not work well and
fail to extract the similarity information from the feature vector.

Figure 6.7: Performance improvement with different dimensionality reduction
techniques for the public dataset with Add user attack.

Figure 6.7 shows the accuracy with 2 dimensionality reduction techniques,
PCA and trucated SVD, applied in the sanitization process for the Add user
attack in the ADFA-LD dataset. We adopt the Euclidean distance metric as
it is demonstrated as optimal and the reduced dimension is set to 10 with grid
search and correlation analysis. Same as our previous observation, the accuracy
is constant at 0.84 over different poison portion values. The accuracy values
fluctuate slightly with dimensionality techniques, ranging from 0.8 to 0.86 for
truncatedSVD (in red) and from 0.8 to 0.89 for PCA (in purple). We observe
that performing dimensionality reduction does not increase the effectiveness of
the sanitization process obviously.

6.8 Related work
There are plenty of recent works investigating the performance degradation of
ML-based IDS caused by poisoning attacks. [84] investigated the influences of
the poisoning attacks for PDF malware detectors using deep learning models.

110 Chapter 6. Defending against poisoning attacks for IDS

But the PDF files, same as image data, require the adversarial samples to have
the same functionality as the normal data. The work in [85], [86] and [87] studied
the impact of poisoning attacks on the network IDS with public dataset of network
traffics, which are also time-series. However, all those IDS adopt deep learning
models, which have different label flipping strategies from classic machine learning
models. To the best of our knowledge, we are the first to evaluate the sensitivity of
host-based IDS with the monitoring metric of syscall traces. In the research area
of defending adversarial machine learning attacks, some works aim to make the
training algorithms more resistant. [88] used nonlinear data projections and game
theory to improve the resilience of SVMs against adversarial samples. The work in
[89] proposed an adversarial SVM model, which can gain higher robustness with
a modified loss function. However, these approaches sacrifice the performance of
the classifiers and are not general. [90] proposed to reduce the influence of the
adversarial samples by measuring the impact of each sample, but the method is
very computationally expensive. [91] used KNN to filter out poisoned samples
but it has limited effect for high dimensional data. [92] proposed to use weight
initialization to remove the adversarial samples in the training set, but it assumes
a small untainted dataset is available.

6.9 Conclusions and future works
We evaluated and compared the performance degradation of OC-SVM caused
by 3 different poisoning attacks: furthest first attack, nearest first attack and
ALFA. From the attacker’s perspective, the furthest first attack is optimal with
a higher degradation level and lower computational effort. From the defender’s
perspective, we noticed that even a small portion of injected malicious samples
can deteriorate the classifier’s performance dramatically.

We proposed a sanitization process to filter out malicious samples before train-
ing. DBSCAN is used to separate clusters and label outliers according to the
density. The sanitization process automatically removes all outliers if the output
cluster number is 1. Our experimental results demonstrated the sanitization pro-
cess is effective for all applications and poisoning strategies we considered. We
compared the performance of 6 distance metrics and observed that the Euclidean
distance is optimal since it best fits to the data patterns of the system call traces.
Dimensionality reduction techniques do not contribute to an obvious performance
improvement even with properly selected dimension numbers. DBSCAN param-
eters are sensitive to distance metrics but not the type of application, hence
parameter reuse is therefore feasible.

Together with the functionalities described in Chapter 4 and Chapter 5, our
proposed architecture is easily incorporated into the DDM digital infrastructures
as a policy enforcement component.

Chapter 7
Conclusions and future works

Data sharing and federation can significantly increase efficiency and lower the cost
of digital collaborations. More useful information can be found if more diverse
data is available. Motivating data owners to share their data and engage into
such collaborations is critical. Therefore, it is important to convince them that
their outsourced data will be used in a secure and controlled manner. Construct-
ing a policy governing concrete data usage rules among all parties is an essential
step. It is even more important to build digital infrastructures to enforce the
policy effectively. In this thesis, we presented essential functional components for
secure data sharing in the context of a DDM prototype. In Chapter 2 and 3, we
introduced concrete methodologies to link high-level applications and underlying
infrastructures. In Chapter 4, 5 and 6, we described a distributed architecture to
detect suspicious behaviors that break the policy during the execution stage. We
evaluated the performance of the proposed methodologies with the data logistic
use case. By examining the experimental results, we gained insights into how
the concept of DDM and proposed functional components work in practice. The
proposed methodology can also be integrated into other data exchange infras-
tructures.

The main contributions we achieved from this work are:
• an approach to model and measure mutual similarities of multi-lateral col-

laboration relationships,

• a framework to quantitatively assess and compare risk exposure of data
exchange infrastructures,

• a hybrid intrusion detection system,

• a methodology to profile and discriminate running behaviors of a container-
ized algorithm,

• a defense mechanism against poisoning attacks targeted to machine learning
based IDS.

111

112 Chapter 7. Conclusions and future works

7.1 Answers to research questions

With the above-mentioned outcomes and the analysis of evaluation results, we
answer our main research question defined in Chapter 1:

How to select optimal application-tailored infrastructures and enhance policy
compliance capabilities?

The research work was conducted in 4 phases: modeling, selecting, monitoring
and defending. Figure 7.1 illustrates the concrete procedures.

We started from the high level framework of a DDM data sharing infrastruc-
ture, a concept proposed by the research project DL4LD to facilitate data sharing
among Dutch logistic parties. In this thesis, our main focus is building functional
mechanisms along the arrow chain in the center, from policy to data exchange
infrastructures, via infrastructure patterns. The DDM customers come with a
concrete application with pre-agreed policy rules, for instance, the airline use
case. We first introduced a component linking the policy to the infrastructure
patterns in Chapter 2. The mechanism selects digital infrastructure patterns that
satisfy the collaboration request to a maximal degree by modeling and closeness
identification. Secondly, we presented a threat-analysis driven risk assessment
framework in Chapter 3. After delegating an application to a potential secure
infrastructure, it can quantitatively assess the remaining risk. The risk assess-
ment results allow DDM customers to rank and select the most secure digital
infrastructures. Also, the quantitative assess results increase the transparency
and boost the confidence of data owners to share their data. The optimal digi-
tal infrastructure for a specific data federation application is the one which can
support the requested collaboration model and provides the best security guaran-
tee. Then we presented a distributed architecture that detects policy compliance
when an algorithm executes on the data. There are 3 main components, which
are profile generation and validation module introduced in Chapter 4, a hybrid
IDS module introduced in Chapter 5 and a sanitization module introduced in
Chapter 6. A profile and a pre-trained IDS model are built for every uniquely
identifiable compute object. They are initially trained in a secure environment
and then distributed to endpoint execution platforms via a secure channel. The
system call traces are monitored, analysed and verified in endpoint points plat-
forms. The IDS model is retrained periodically to increase generalization with the
empirical data. A sanitization algorithm is implemented to filter out malicious
samples to further defend the architecture against adversarial machine learning
attacks. This architecture can be integrated into a DDM infrastructure or other
data sharing platforms to help enforce the policy during execution.

To be more specific, we answer the sub research questions with more details.

• RQ1: How to map an application request to a best-fit digital infrastructure
based on collaboration models?

7.1. Answers to research questions 113

Collaboration Modeling

Closeness Identification

Infrastructure Selection

General Evaluation Metric

High Level Framework
Data Federation Application Collaboration Request

Optimal Infrastructure

Policy Compliance Detection Archetecture

(i)

(ii)

Figure 7.1: Functional components of a DDM prototype: (i)components to se-
lect optimal digital infrastructures given a data federation application considering
both compatibility and security. (ii) components to improve the policy enforce-
ment capability of a DDM by effectively detecting rule compliance during the
execution stage.

114 Chapter 7. Conclusions and future works

We map an application request to an optimal infrastructure with the pro-
cedures described in Chapter 2: 1) represent both the application request and
the provided architectural patterns with 3-D matrices according to the modelling
methodology 2) define similarities measures with the mathematical representa-
tions to identify the closeness between any two collaboration models 3) select an
archetype that fulfils the hard request and is most similar to the soft request of the
application. By answering this question, we addressed the influence of underlying
multi-lateral trust relationships among the involved parties. With the proposed
matching mechanisms, the DDM customers can select a digital infrastructure
which supports archetypal patterns for their data federation applications.

• RQ2: How to select an optimal digital infrastructure with minimum risk?

We answer this question by introducing a risk assessment framework in Chap-
ter 3. The framework can quantitatively estimate the remaining risk of a data
federation application operated on specific digital infrastructure. In-depth threat
analysis was conducted. The data federation application is represented as a list
of transactions and the threats are identified in a semi-automatic manner. The
proposed framework estimates the relative severity of each threat with a modified
version of Microsoft DREAD model. New risk attributes were defined to address
the impacts of important aspects of a data sharing platform, such as application-
dependent security requests, the essential role of monitoring and so on. Since
most risk assessment systems are criticized to be over-subject, we addressed this
issue from two perspectives. 1) We defined more fine-grained guidance for risk
attribute level assignment. 2) We evaluated the robustness of the DREAD model
caused by the subjective choices of parameters. We showed with our experimental
results that DREAD model can gain good stability as we adopted it to compute
the risk ratios rather than the absolute values. We also proved that our method
can offer good precision to distinguish between individual threats.

After answering the previous two sub research questions, potential customers
are able to select a best-fit digital infrastructure when they come with a data
sharing application request. We further investigated how to enhance the policy
enforcement capability in a data exchange infrastructure, especially when the
data and algorithm meet. Detection plays an important role. Here comes our
third sub research question:

• RQ3: How to develop policy compliance detection components during exe-
cution?

The proposed architecture detects whether an algorithm conforms to a policy
by monitoring and analyzing Linux system call traces generated by the running
container. Firstly, we introduced a methodology to profile and verify the running
behaviors of an algorithm in Chapter 4. This allows us to distinguish whether
an algorithm running inside a container is the one claimed to be. For instance,

7.2. Future works 115

this method can effectively detect the compliance of policy rules such as the data
object can only be accessed by compute object A, but not the others. The profile
is built with the frequency distribution of n-grams of system call symbols and
the verification is conducted by calculating dissimilarity with Laplace smoothing
and cross-entropy. We showed that the proposed methodology can provide high
accuracy and support profile reuse over different platforms and input data. Sec-
ondly, we introduced a hybrid real-time IDS in Chapter 5. It uses OC-SVM as
the anomaly detection algorithm and applies a signature-based methodology to
reduce false alarms. The streaming systems calls are segmented with a constant
time window. We demonstrate that the proposed IDS can achieve outstanding
performance with high TPR and relatively low FPR values for detecting modern
containerized attacks.

• RQ4: How to defend against adversarial machine learning attacks for the
monitoring components?

To answer this sub research question, we first conducted experiments to eval-
uate OC-SVM based IDS sensitivity for poisoning attacks. By examining the
experimental results, we proved the necessity of implementing a defending mech-
anism due to the observations that the classifier’s performance may degrade dra-
matically due to a very small portion of malicious samples. Then, we introduced
a sanitization mechanism based on the DBSCAN clustering algorithm. The ad-
vantages mainly lie in two aspects. i) It does not require any pre-knowledge of
the normal data or the machine learning models. ii) It can separate the data
of any shape which conforms to the statistical property of system calls. Finally,
we demonstrated that the proposed mechanism effectively filters out malicious
samples and achieves almost equal accuracy with an untainted training dataset.

7.2 Future works
Our work can be extended in the following two directions in the future.

7.2.1 Improve the anomaly-based IDS
Since we aim to detect potential intrusions for a distributed application, we will
extend the IDS to detect anomalies by monitoring multi-dimensional metrics.
The metrics comprise two main categories: the interactions between distributed
execution platforms and the execution information of a single execution platform.
The former includes information such as traffic volumes and traffic patterns. The
latter includes information such as the CPU or GPU usage, log information and
memory access. The detection engine can decide by analyzing all these monitored
metrics jointly. This will allow us to achieve richer information and detect host-
based malicious behaviors more accurately. In addition, this enables the IDS to

116 Chapter 7. Conclusions and future works

detect intrusions during the data transmission stage. After extending the IDS
to analyze multi-variant data, it is also interesting to combine different machine
learning models and detect the anomalies in parallel. It is important to investigate
the performance of other anomaly detection models, such as auto-encoder, gen-
erative adversarial networks, isolation forest, with different monitoring metrics.
Therefore we can design the distributed IDS that achieve an optimal trade-off
between detection performance and cost.

It is also interesting to explore and expand the confidence area of a distributed
IDS. In this work, we train an individual IDS model for each application. We will
investigate the possibility that a group of similar applications can share one pre-
trained IDS model with sufficiently good detection performance. Hence, we can
have richer training data and increase the overall efficiency. The main challenges
lie in clustering the different applications and defining the confidence area of a
trained IDS model.

7.2.2 Improve the sanitization mechanism
We have demonstrated that our DBSCAN based IDS has gained good perfor-
mance for public and customized datasets. We did explain why the DBSCAN is
expected to gain better performance. In the future, we will validate this hypoth-
esis by experimentally comparing its performance with other outlier detection
algorithms. Furthermore, it is also interesting to investigate the generalization
of our proposed approach. To achieve this goal, we will apply the sanitization
mechanism to other anomaly-based machine learning models and study the cor-
responding performance improvements in classification accuracy.

Bibliography

[1] EarthWeb. (2022) How much data is created every day in 2022. [Online].
Available: https://earthweb.com/how-much-data-is-created-every-day/

[2] J. A. Kassem, C. De Laat, A. Taal, and P. Grosso, “The epi framework:
A dynamic data sharing framework for healthcare use cases,” IEEE Access,
vol. 8, pp. 179 909–179 920, 2020.

[3] H. Ma, R. Zhang, G. Yang, Z. Song, K. He, and Y. Xiao, “Efficient fine-
grained data sharing mechanism for electronic medical record systems with
mobile devices,” IEEE Transactions on Dependable and Secure Computing,
vol. 17, no. 5, pp. 1026–1038, 2018.

[4] X. Lu and X. Cheng, “A secure and lightweight data sharing scheme for
internet of medical things,” IEEE Access, vol. 8, pp. 5022–5030, 2019.

[5] H. Lei, Y. Yan, Z. Bao, Q. Wang, Y. Zhang, and W. Shi, “Sdsbt: A secure
multi-party data sharing platform based on blockchain and tee,” in Interna-
tional Symposium on Cyberspace Safety and Security. Springer, 2020, pp.
184–196.

[6] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution envi-
ronment: what it is, and what it is not,” in 2015 IEEE Trustcom/Big-
DataSE/ISPA, vol. 1. IEEE, 2015, pp. 57–64.

[7] R. N. Zaeem and K. S. Barber, “The effect of the gdpr on privacy policies:
Recent progress and future promise,” ACM Transactions on Management
Information Systems (TMIS), vol. 12, no. 1, pp. 1–20, 2020.

[8] S. Prabhakaran, S. Raman, J. E. Vogt, and V. Roth, “Automatic
Model Selection in Archetype Analysis.” Springer, Berlin, Heidelberg,
2012, pp. 458–467. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-32717-9{ }46

117

https://earthweb.com/how-much-data-is-created-every-day/
http://link.springer.com/10.1007/978-3-642-32717-9{_}46
http://link.springer.com/10.1007/978-3-642-32717-9{_}46

118 BIBLIOGRAPHY

[9] A. Jøsang, E. Gray, and M. Kinateder, “Simplification and analysis of transi-
tive trust networks,” Web Intelligence and Agent Systems: An International
Journal, vol. 4, no. 2, pp. 139–161, 2006.

[10] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov, “Hamming distance metric
learning,” in Advances in neural information processing systems, 2012, pp.
1061–1069.

[11] S. Cisneros-Cabrera, A. Ramzan, P. Sampaio, and N. Mehandjiev, “Digi-
tal marketplaces for industry 4.0: a survey and gap analysis,” in Working
Conference on Virtual Enterprises. Springer, 2017, pp. 18–27.

[12] A. Fradkin, “Search, matching, and the role of digital marketplace design in
enabling trade: Evidence from airbnb,” 2017.

[13] D. Zahay, D. Schultz, and A. Kumar, “Reimagining branding for the new b2b
digital marketplace,” Journal of Brand Strategy, vol. 3, no. 4, pp. 357–372,
2015.

[14] A. Ordanini and A. Pol, “Infomediation and competitive advantage in b2b
digital marketplaces,” European Management Journal, vol. 19, no. 3, pp.
276–285, 2001.

[15] M. Schoop and T. List, “To monitor or not to monitor-the role of trusted
third parties in electronic marketplaces,” in Information Age Economy.
Springer, 2001, pp. 605–618.

[16] M. Schmees, “Distributed digital commerce,” in Proceedings of the 5th in-
ternational conference on Electronic commerce. ACM, 2003, pp. 131–137.

[17] H. Tran, M. Hitchens, V. Varadharajan, and P. Watters, “A trust based
access control framework for p2p file-sharing systems,” in Proceedings of the
38th Annual Hawaii International Conference on System Sciences. IEEE,
2005, pp. 302c–302c.

[18] L. Gommans, J. Vollbrecht, B. Gommans-de Bruijn, and C. de Laat, “The
service provider group framework: A framework for arranging trust and
power to facilitate authorization of network services,” Future Generation
Computer Systems, vol. 45, pp. 176–192, 2015.

[19] A. Deljoo, T. van Engers, R. Koning, L. Gommans, and C. de Laat, “To-
wards trustworthy information sharing by creating cyber security alliances,”
in 2018 17th IEEE International Conference On Trust, Security And Pri-
vacy In Computing And Communications/12th IEEE International Confer-
ence On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE,
2018, pp. 1506–1510.

BIBLIOGRAPHY 119

[20] M. Sloman, “Policy driven management for distributed systems,” Journal of
network and Systems Management, vol. 2, no. 4, pp. 333–360, 1994.

[21] C. Bennett, E. Esseiva, T. Kol, and R. Stevens, “Policy driven access to
electronic healthcare records,” Jun. 28 2007, uS Patent App. 11/316,262.

[22] Miscosoft. (2020) Microsoft security development lifecycle (sdl). [Online].
Available: https://www.microsoft.com/en-us/securityengineering/sdl/

[23] V. Shivraj, M. Rajan, and P. Balamuralidhar, “A graph theory based generic
risk assessment framework for internet of things (iot),” in 2017 IEEE Interna-
tional Conference on Advanced Networks and Telecommunications Systems
(ANTS). IEEE, 2017, pp. 1–6.

[24] S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini, “A risk assessment
methodology for the internet of things,” Computer Communications, vol.
129, pp. 67–79, 2018.

[25] P. Anand, J. Ryoo, H. Kim, and E. Kim, “Threat assessment in the cloud
environment: A quantitative approach for security pattern selection,” in
Proceedings of the 10th International Conference on Ubiquitous Information
Management and Communication, 2016, pp. 1–8.

[26] A. A. Poli and M. C. Cirillo, “On the use of the normalized mean square er-
ror in evaluating dispersion model performance,” Atmospheric Environment.
Part A. General Topics, vol. 27, no. 15, pp. 2427–2434, 1993.

[27] F. Lindskog, A. McNeil, and U. Schmock, “Kendall’s tau for elliptical distri-
butions,” in Credit Risk. Springer, 2003, pp. 149–156.

[28] B. Lundgren and N. Möller, “Defining information security,” Science and
engineering ethics, vol. 25, no. 2, pp. 419–441, 2019.

[29] P. Anand, J. Ryoo, H. Kim, and E. Kim, “Threat assessment in the cloud
environment: A quantitative approach for security pattern selection,” in
Proceedings of the 10th International Conference on Ubiquitous Information
Management and Communication, 2016, pp. 1–8.

[30] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang, “Containerleaks:
Emerging security threats of information leakages in container clouds,” in
2017 47th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN). IEEE, 2017, pp. 237–248.

[31] L. Zhang, R. Cushing, L. Gommans, C. De Laat, and P. Grosso, “Modeling
of collaboration archetypes in digital market places,” IEEE Access, vol. 7,
pp. 102 689–102 700, 2019.

https://www.microsoft.com/en-us/securityengineering/sdl/

120 BIBLIOGRAPHY

[32] STRIDE/DREAD. (2020) The dread approach to threat assessment.
[Online]. Available: https://docs.microsoft.com/en-us/windows-hardware/
drivers/driversecurity/threat-modeling-for-drivers

[33] CAPEC. (2020) Common attack pattern enumeration and classification.
[Online]. Available: https://capec.mitre.org/

[34] X. Zhang, N. Wuwong, H. Li, and X. Zhang, “Information security risk
management framework for the cloud computing environments,” in 2010
10th IEEE international conference on computer and information technology.
IEEE, 2010, pp. 1328–1334.

[35] J. Luna, H. Ghani, T. Vateva, and N. Suri, “Quantitative assessment of cloud
security level agreements: A case study,” Proc. of Security and Cryptography,
pp. 64–73, 2012.

[36] R. Shaikh and M. Sasikumar, “Trust model for measuring security strength
of cloud computing service,” Procedia Computer Science, vol. 45, pp. 380–
389, 2015.

[37] A. Sen and S. Madria, “Off-line risk assessment of cloud service provider,”
in 2014 IEEE World Congress on Services. IEEE, 2014, pp. 58–65.

[38] G. Disterer, “Iso/iec 27000, 27001 and 27002 for information security man-
agement,” 2013.

[39] L. A. Gordon, M. P. Loeb, and L. Zhou, “Integrating cost–benefit analysis
into the nist cybersecurity framework via the gordon–loeb model,” Journal
of Cybersecurity, vol. 6, no. 1, p. tyaa005, 2020.

[40] C. Alberts, A. Dorofee, J. Stevens, and C. Woody, “Introduction to the oc-
tave approach,” Carnegie-Mellon Univ Pittsburgh Pa Software Engineering
Inst, Tech. Rep., 2003.

[41] F. Den Braber, I. Hogganvik, M. S. Lund, K. Stølen, and F. Vraalsen,
“Model-based security analysis in seven steps—a guided tour to the coras
method,” BT Technology Journal, vol. 25, no. 1, pp. 101–117, 2007.

[42] D. Seifert and H. Reza, “A security analysis of cyber-physical systems archi-
tecture for healthcare,” Computers, vol. 5, no. 4, p. 27, 2016.

[43] M. Cagnazzo, M. Hertlein, T. Holz, and N. Pohlmann, “Threat modeling
for mobile health systems,” in 2018 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW). IEEE, 2018, pp. 314–319.

https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers
https://capec.mitre.org/

BIBLIOGRAPHY 121

[44] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peter-
son, “Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in Proceedings of the 2Nd ACM
SIGOPS/EuroSys european conference on computer systems 2007, 2007, pp.
275–287.

[45] R. S. Canon and A. Younge, “A case for portability and reproducibility of
hpc containers,” in 2019 IEEE/ACM International Workshop on Contain-
ers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC), 2019, pp. 49–54.

[46] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self
for unix processes,” in Proceedings 1996 IEEE Symposium on Security and
Privacy. IEEE, 1996, pp. 120–128.

[47] S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolution of system-call mon-
itoring,” in 2008 annual computer security applications conference (acsac).
IEEE, 2008, pp. 418–430.

[48] S. M. Varghese and K. P. Jacob, “Process profiling using frequencies of sys-
tem calls,” in The Second International Conference on Availability, Reliabil-
ity and Security (ARES’07). IEEE, 2007, pp. 473–479.

[49] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android
malware detection based on system call sequences and lstm,” Multimedia
Tools and Applications, vol. 78, no. 4, pp. 3979–3999, 2019.

[50] Sysdig, “Sysdig,” https://www.sysdig.com/, January 2020. [Online].
Available: https://www.sysdig.com/

[51] W. Khreich, B. Khosravifar, A. Hamou-Lhadj, and C. Talhi, “An anomaly
detection system based on variable n-gram features and one-class svm,” In-
formation and Software Technology, vol. 91, pp. 186–197, 2017.

[52] B. Subba, S. Biswas, and S. Karmakar, “Host based intrusion detection
system using frequency analysis of n-gram terms,” in TENCON 2017-2017
IEEE Region 10 Conference. IEEE, 2017, pp. 2006–2011.

[53] D. Merkel, “Docker: lightweight linux containers for consistent development
and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[54] TensorFlow, “Tensorflow,” https://www.tensorflow.org/, January 2020.
[Online]. Available: https://www.tensorflow.org/

[55] S.-H. Paek, Y.-K. Oh, J. Yun, and D.-H. Lee, “The architecture of host-based
intrusion detection model generation system for the frequency per system

https://www.sysdig.com/
https://www.tensorflow.org/

122 BIBLIOGRAPHY

call,” in 2006 International Conference on Hybrid Information Technology,
vol. 2. IEEE, 2006, pp. 277–283.

[56] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using se-
quences of system calls,” Journal of computer security, vol. 6, no. 3, pp.
151–180, 1998.

[57] S. Suratkar, F. Kazi, R. Gaikwad, A. Shete, R. Kabra, and S. Khirsagar,
“Multi hidden markov models for improved anomaly detection using system
call analysis,” in 2019 IEEE Bombay Section Signature Conference (IBSSC).
IEEE, 2019, pp. 1–6.

[58] P. K. Das, A. Joshi, and T. Finin, “App behavioral analysis using system
calls,” in 2017 IEEE Conference on Computer Communications Workshops,
INFOCOM WKSHPS 2017. Institute of Electrical and Electronics Engineers
Inc., nov 2017, pp. 487–492.

[59] R. Cushing, R. Koning, L. Zhang, C. de Laat, and P. Grosso, “Auditable
secure network overlays for multi-domain distributed applications,” in 2020
IFIP Networking Conference (Networking). IEEE, 2020, pp. 658–660.

[60] O. Tunde-Onadele, J. He, T. Dai, and X. Gu, “A study on container vulner-
ability exploit detection,” in 2019 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, 2019, pp. 121–127.

[61] T. R. Glass-Vanderlan, M. D. Iannacone, M. S. Vincent, R. A. Bridges
et al., “A survey of intrusion detection systems leveraging host data,” arXiv
preprint arXiv:1805.06070, 2018.

[62] G. Creech and J. Hu, “Generation of a new ids test dataset: Time to retire
the kdd collection,” in 2013 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2013, pp. 4487–4492.

[63] M. Xie, J. Hu, and J. Slay, “Evaluating host-based anomaly detection sys-
tems: Application of the one-class svm algorithm to adfa-ld,” in 2014 11th In-
ternational Conference on Fuzzy Systems and Knowledge Discovery (FSKD).
IEEE, 2014, pp. 978–982.

[64] W. S. Noble, “What is a support vector machine?” Nature biotechnology,
vol. 24, no. 12, pp. 1565–1567, 2006.

[65] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C. Platt
et al., “Support vector method for novelty detection.” in NIPS, vol. 12. Cite-
seer, 1999, pp. 582–588.

[66] L. M. Manevitz and M. Yousef, “One-class svms for document classification,”
Journal of machine Learning research, vol. 2, no. Dec, pp. 139–154, 2001.

BIBLIOGRAPHY 123

[67] L. Zhang., R. Cushing., R. Koning., C. de Laat., and P. Grosso., “Profiling
and discriminating of containerized ml applications in digital data market-
places (ddm),” in Proceedings of the 7th International Conference on In-
formation Systems Security and Privacy - Volume 1: ICISSP,, INSTICC.
SciTePress, 2021, pp. 508–515.

[68] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at
scale,” arXiv preprint arXiv:1611.01236, 2016.

[69] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial
machine learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018.

[70] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[71] Y. Bengio and Y. Grandvalet, “No unbiased estimator of the variance of k-
fold cross-validation,” Journal of machine learning research, vol. 5, no. Sep,
pp. 1089–1105, 2004.

[72] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “A survey of techniques
for incremental learning of hmm parameters,” Information Sciences, vol. 197,
pp. 105–130, 2012.

[73] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for intrusion
detection,” Computers & security, vol. 21, no. 5, pp. 439–448, 2002.

[74] B. Subba, S. Biswas, and S. Karmakar, “Host based intrusion detection
system using frequency analysis of n-gram terms,” in TENCON 2017-2017
IEEE Region 10 Conference. IEEE, 2017, pp. 2006–2011.

[75] W. Khreich, B. Khosravifar, A. Hamou-Lhadj, and C. Talhi, “An anomaly
detection system based on variable n-gram features and one-class svm,” In-
formation and Software Technology, vol. 91, pp. 186–197, 2017.

[76] Z. Chiba, N. Abghour, K. Moussaid, M. Rida et al., “Intelligent approach
to build a deep neural network based ids for cloud environment using com-
bination of machine learning algorithms,” computers & security, vol. 86, pp.
291–317, 2019.

[77] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial
machine learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018.

[78] M. Xie, J. Hu, and J. Slay, “Evaluating host-based anomaly detection sys-
tems: Application of the one-class SVM algorithm to ADFA-LD,” 2014 11th
International Conference on Fuzzy Systems and Knowledge Discovery, FSKD
2014, pp. 978–982, 2014.

124 BIBLIOGRAPHY

[79] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revis-
ited, revisited: why and how you should (still) use dbscan,” ACM Transac-
tions on Database Systems (TODS), vol. 42, no. 3, pp. 1–21, 2017.

[80] H. Xiao, H. Xiao, and C. Eckert, “Adversarial label flips attack on support
vector machines,” Frontiers in Artificial Intelligence and Applications, vol.
242, pp. 870–875, 2012.

[81] M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Can
shared-neighbor distances defeat the curse of dimensionality?” in In-
ternational conference on scientific and statistical database management.
Springer, 2010, pp. 482–500.

[82] L. Zhang, R. Cushing, C. de Laat, and P. Grosso, “A real-time intrusion de-
tection system based on oc-svm for containerized applications,” in The 24th
IEEE International Conference on Computational Science and Engineering,
2021.

[83] B. Jin, Y. Chen, D. Li, K. Poolla, and A. Sangiovanni-Vincentelli, “A
one-class support vector machine calibration method for time series change
point detection,” in 2019 IEEE International Conference on Prognostics and
Health Management (ICPHM). IEEE, 2019, pp. 1–5.

[84] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel, “Adver-
sarial perturbations against deep neural networks for malware classification,”
arXiv preprint arXiv:1606.04435, 2016.

[85] C.-H. Huang, T.-H. Lee, L.-h. Chang, J.-R. Lin, and G. Horng, “Adversarial
attacks on sdn-based deep learning ids system,” in International Conference
on Mobile and Wireless Technology. Springer, 2018, pp. 181–191.

[86] Z. Wang, “Deep learning-based intrusion detection with adversaries,” IEEE
Access, vol. 6, pp. 38 367–38 384, 2018.

[87] J. Clements, Y. Yang, A. Sharma, H. Hu, and Y. Lao, “Rallying adversar-
ial techniques against deep learning for network security,” arXiv preprint
arXiv:1903.11688, 2019.

[88] S. Weerasinghe, S. M. Erfani, T. Alpcan, and C. Leckie, “Support vector ma-
chines resilient against training data integrity attacks,” Pattern Recognition,
vol. 96, p. 106985, 2019.

[89] Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and B. Xi, “Adversarial sup-
port vector machine learning,” in Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2012, pp.
1059–1067.

BIBLIOGRAPHY 125

[90] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini,
C. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine learning to subvert
your spam filter.” LEET, vol. 8, pp. 1–9, 2008.

[91] A. Paudice, L. Muñoz-González, and E. C. Lupu, “Label sanitization against
label flipping poisoning attacks,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2018, pp. 5–15.

[92] P. P. Chan, F. Luo, Z. Chen, Y. Shu, and D. S. Yeung, “Transfer learning
based countermeasure against label flipping poisoning attack,” Information
Sciences, vol. 548, pp. 450–460, 2021.

Publications

Journal Publications
• Lu Zhang, Reginald Cushing, Leon Gommans, Cees De Laat, and Paola

Grosso, “Modeling of Collaboration Archetypes in Digital Market Places.”
IEEE Access 7 (2019): 102689-102700.

• Lu Zhang, Arie Taal, Reginald Cushing, Cees de Laat, Paola Grosso,
“A risk level assessment system based on the STRIDE/DREAD model for
Digital Data Marketplaces.” International Journal of Information Security
21, no. 3 (2022): 509-525.

Conference Publications
• Lu Zhang “Management of collaborations in digital marketplaces.” In 2019

International Conference on High Performance Computing and Simulation
(HPCS), pp. 1014-1016. IEEE, 2019.

• Reginald Cushing, Ralph Koning, Lu Zhang, Cees de Laat, Paola Grosso,
“Auditable secure network overlays for multi-domain distributed applica-
tions.’ In 2020 IFIP Networking Conference (Networking), pp. 658-660.
IEEE, 2020.

• Lu Zhang, Reginald Cushing, Ralph Koning, Cees de Laat, Paola Grosso,
“Profiling and discriminating of containerized ML applications in Digital
Data Marketplaces (DDM).” In ICISSP, pp. 508-515. 2021.

• Lu Zhang, Reginald Cushing, Cees de Laat, Paola Grosso, “A real-time in-
trusion detection system based on OC-SVM for containerized applications.”
In 2021 IEEE 24th International Conference on Computational Science and
Engineering (CSE), pp. 138-145. IEEE, 2021.

127

128 Publications

• Lu Zhang, Reginald Cushing, Paola Grosso, “Defending OC-SVM based
IDS from poisoning attacks.” In proceeding of 5th IEEE Conference on De-
pendable and Secure Computing (IEEE DSC 2022)/The 4th International
Workshop on Secure Smart Societies in Next Generation Networks (SEC-
SOC). IEEE, 2022.

Demonstrations
• Reginald Cushing, Lu Zhang, Paola Grosso, Tim van Zalingen, Joseph

Hill, Leon Gommans, Cees de Laat, Vijaay Doraiswamy, Purvish Puro-
hit, Kaladhar Voruganti, Craig Waldrop, Rodney Wilson, Marc Lyonnais:
“Dataharbours: computing archetypes for digital marketplaces”, a demon-
stration (short paper description) at supercomputing 2018 (SC 2018).

• Reginald Cushing, Lu Zhang, Yuri Demchenko, Cees de Laat, Paola
Grosso, “Data Harbours: Computing archetypes for digital marketplaces”,
a demonstration at the 2019 International Conference on High Performance
Computing and Simulation (HPCS 2019).

• Ralph Koning, Reginald Cushing, Lu Zhang, Cees de Laat, Paola Grosso,
Kaladhar Voruganti, Rodney Wilson, Marc Lyonnais: “A secure network
overlay for tracking and enforcement of data transaction rules”, a demon-
stration (short paper description) at supercomputing 2019 (SC 2019).

Summary

Data sharing and aggregation can generate great value. To motivate such digital
collaborations, it is essential to establish digital infrastructures, e.g. digital data
marketplaces, to facilitate policy-driven data sharing and federations in a secure
and trustworthy manner. In this thesis, we are motivated to investigate how to
select optimal application-tailored infrastructures and enhance policy compliance
capabilities.

To match a policy-driven data exchange application to a best-fit digital infras-
tructure, we mainly consider two aspects, namely, compatibility and security. For
compatibility, we presented a mechanism for selecting digital infrastructure pat-
terns that satisfy the collaboration request to a maximum degree by modelling and
closeness identification. We also proposed four metrics to allow evaluating and
comparing competing DDMs from more complete dimensions: coverage, extensi-
bility, precision and flexibility. We validated the effectiveness of our methodology
with a real-world use case.

Security is also an important concern. We presented a threat-analysis driven
quantitative risk assessment framework. An in-depth threat analysis was con-
ducted. The data federation application is represented as a list of transactions
and the threats are identified in a semi-automatic manner. The framework esti-
mates the relative severity of each threat with a modified version of the Microsoft
DREAD model and evaluates the remaining risk after applying the security con-
trols of a DDM infrastructure. We also validated the stability and resolution of
our proposed framework with a real world use case. We proved that our proposed
system is robust against unavoidable subjective choices of the STRIDE/DREAD
model parameters and can provide sufficient resolution.

We further investigated how to enhance the policy enforcement capability in
the execution stage. We presented a distributed architecture that detects policy
compliance by monitoring and analyzing Linux system call traces generated by
the running container. The architecture works as follows. A profile and a pre-
trained IDS model are built for every uniquely identifiable compute object. They

129

130 Summary

are initially trained in a secure environment and then distributed to endpoint
execution platforms via a secure channel. The system call traces are monitored,
analysed and verified in endpoint points platforms. The IDS model is retrained
periodically to increase generalization with the empirical data. A sanitization
module is implemented to filter out malicious samples to further defend the ar-
chitecture against adversarial machine learning attacks.

Firstly, we introduced a methodology to profile and verify the running be-
haviors of an algorithm. This allows us to distinguish whether an algorithm
running inside a container is the one claimed to be. With experimental results,
we showed that the proposed methodology can provide high accuracy and support
profile reuse over different platforms and input data.

Secondly, we presented a hybrid real-time IDS. We adopt the OC-SVM al-
gorithm to detect anomalies and apply a signature-based methodology to reduce
false alarms. The streaming systems calls are segmented with a constant time win-
dow. We evaluated that the proposed IDS can achieve outstanding performance
with high TPR and relatively low FPR values for detecting modern containerized
attacks. In addition, we investigated the influence of various feature extraction
methods, kernel functions and segmentation length with four metrics.

Thirdly, we conducted experiments to evaluate OC-SVM based IDS sensitiv-
ity for poisoning attacks. We proposed a sanitization mechanism based on the
DBSCAN clustering algorithm. We demonstrated that the proposed mechanism
effectively filters out malicious samples and achieves almost equal accuracy with
an untainted training dataset.

Samenvatting

Het delen en samenvoegen van gegevens kan grote waarde genereren. Om dergeli-
jke digitale samenwerkingen te motiveren is het essentieel om digitale infras-
tructuren op te zetten, bijvoorbeeld digitale datamarkten, om beleidsgestuurde
gegevensdeling en federaties op een veilige en betrouwbare manier te faciliteren.
In dit proefschrift zijn we gemotiveerd om te onderzoeken hoe optimale infras-
tructuren op maat van de toepassing kunnen worden geselecteerd en hoe de mo-
gelijkheden om het beleid na te leven kunnen worden verbeterd.

Om een beleidsgestuurde toepassing voor gegevensuitwisseling af te stemmen
op een best passende digitale infrastructuur, beschouwen wij hoofdzakelijk twee
aspecten, namelijk compatibiliteit en veiligheid. Voor compatibiliteit hebben wij
een mechanisme voorgesteld voor het selecteren van digitale infrastructuurpatro-
nen die maximaal voldoen aan de samenwerkingsvraag door middel van model-
lering en identificatie van nabijheid. Wij hebben ook vier metrieken voorgesteld
om concurrerende DDM’s te kunnen evalueren en vergelijken vanuit vollediger
dimensies: dekking, uitbreidbaarheid, precisie en flexibiliteit. Wij hebben de
doeltreffendheid van onze methodologie gevalideerd met een praktijkgeval.

Veiligheid is ook een belangrijk punt van zorg. Wij presenteerden een kader
voor kwantitatieve risicobeoordeling op basis van dreigingsanalyse. Er werd
een diepgaande dreigingsanalyse uitgevoerd. De datafederatie-applicatie wordt
voorgesteld als een lijst van transacties en de bedreigingen worden op semi-
automatische wijze gëıdentificeerd. Het raamwerk schat de relatieve ernst van
elke bedreiging met een aangepaste versie van het Microsoft DREAD-model en
evalueert het resterende risico na toepassing van de beveiligingscontroles van
een DDM infrastructuur. We hebben ook de stabiliteit en resolutie van ons
voorgestelde raamwerk gevalideerd met een praktijkgeval. Wij hebben aange-
toond dat ons voorgestelde systeem robuust is tegen onvermijdelijke subjectieve
keuzes van de STRIDE/DREAD modelparameters en voldoende resolutie kan
bieden.

Verder hebben we onderzocht hoe we het vermogen tot handhaving van het

131

132 Samenvatting

beleid in de uitvoeringsfase kunnen verbeteren. We hebben een gedistribueerde ar-
chitectuur gepresenteerd die naleving van het beleid detecteert door het monitoren
en analyseren van Linux system call traces die door de draaiende container wor-
den gegenereerd. De architectuur werkt als volgt. Voor elk uniek identificeerbaar
computerobject worden een profiel en een voorgetraind IDS-model gemaakt. Ze
worden eerst getraind in een beveiligde omgeving en vervolgens via een beveiligd
kanaal gedistribueerd naar platforms voor eindpuntuitvoering. De systeemaan-
roepsporen worden gecontroleerd, geanalyseerd en geverifieerd op eindpuntplat-
forms. Het IDS-model wordt periodiek bijgeschoold om de generalisatie met de
empirische gegevens te verhogen. Een saneringsmodule is gëımplementeerd om
schadelijke samples uit te filteren om de architectuur verder te verdedigen tegen
machine learning-aanvallen van tegenstanders.

Ten eerste hebben we een methode gëıntroduceerd om het gedrag van een
algoritme te profileren en te verifiëren. Zo kunnen we onderscheiden of een algo-
ritme dat in een container draait, het algoritme is waarvan wordt beweerd dat het
draait. Met experimentele resultaten hebben wij aangetoond dat de voorgestelde
methodologie een hoge nauwkeurigheid kan bieden en hergebruik van profielen
over verschillende platforms en invoergegevens kan ondersteunen.

Ten tweede hebben wij een hybride IDS gepresenteerd. Wij gebruiken het OC-
SVM algoritme om anomalieën te detecteren en passen een op handtekeningen
gebaseerde methodologie toe om valse alarmen te verminderen. De streaming sys-
teemoproepen worden gesegmenteerd met een constant tijdvenster. Wij hebben
geëvalueerd dat het voorgestelde IDS uitstekende prestaties kan leveren met een
hoge TPR en relatief lage FPR waarden voor het detecteren van moderne gecon-
taineriseerde aanvallen. Bovendien onderzochten wij de invloed van verschillende
methoden voor kenmerkextractie, kernelfuncties en segmenteringslengte met vier
metrieken.

Ten derde hebben we experimenten uitgevoerd om de gevoeligheid van OC-
SVM-gebaseerde IDS voor poisoning-aanvallen te evalueren. We hebben een
zuiveringsmechanisme voorgesteld op basis van het DBSCAN-clusteralgoritme.
Wij hebben aangetoond dat het voorgestelde mechanisme effectief schadelijke
monsters uitfiltert en bijna dezelfde nauwkeurigheid bereikt als een onbezoedelde
trainingsdataset.

Acknowledgements

Time flies. I remember the first time I came to the science park for the interview,
the first day I started my PhD and worked in my office. It was an amazing
adventure to experience all that happened during the last four years. It would
be impossible for me to finish this journey alone. There are all of you providing
me kindness and endless help along the path.

I would like to first thank my promotors Cees and Leon. Cees, I always
got great inspiration from the meetings and discussions we have had. You are
always kind and supportive. You listen to my questions patiently and offer fruitful
suggestions and advice. I deeply appreciate your input and help in the past four
years. Leon, I started my PhD work with the famous archetypes you proposed for
the project. During the project meetings, you always provide me with valuable
advice. Thank you for your effort of helping me write my thesis. You taught me
how to convey my ideas in a more concise and accurate way.

I would like to express my deep gratitude to my promotor and supervisor,
Paola. Thank you for always being there offering your endless support and kind
help. I deeply appreciate all the input and guidance that you devoted to me
and my research. You helped me patiently in writing my first academic paper,
encouraged me to present confidently in public, and provided constructive advise
when I was stuck in research. You have taught me so much, which is not only
about knowledge, but also the way to solve questions, the way to conquer barriers.
It was a fantastic experience working with you for the past four years.

Thanks to my committee members for taking the time to read and evaluate
my thesis. I appreciate all your fruitful feedback.

Sara, Ruyue and Jamila, nice to meet you here. Dear Sara, we experienced
this adventure together. Your accompaniment and encouragement make this
journey more interesting and less lonely. Ruyue and Jamila, I treasure all the
joyful moments with you, the chats and laughs. All of these make this trip more
colorful. I am also grateful to all my officemates, Yixian, Zeshun, Xiaofeng,
Lourens and Henk.

133

134 Acknowledgements

I am also grateful towards my colleagues in the project DL4LD: Reggie, Ralph,
Xin, Mostafa, Giovanni, Lydia, Adam and Arie. I got great inspiration for my
research from the discussions with you. Reggie, thank you for being my daily
supervisor. You are always willing to help and answer my questions patiently.
Arie, thank you very much for guiding me write articles with your insights about
notations and formulas.

I would like to thank all my colleagues from the MNS group and the SNE
cluster. It was a nice experience working with you. I am thankful to the peo-
ple who I have interactions with during various group events and coffee breaks:
Ameneh, Ana, Chrysa, Cyril, Dolly, Florian, Garazi, Henk, Hongyun, Huan,
Joseph, Julius, Jun, Llorenç, Leonardo, Lu-chi, Lukas, Lukasz, Marco, Marian,
Milen, Misha, Na, Peter, Riccardo, Ruyue, Saba, Saeedeh, Spiros, Uraz, Xiaotian,
Yang, Yuandou, Yuri, Zhiming.

Finally yet importantly, I would like to express my very deep appreciation
to my parents. Baba and Mama, thank you so much for your endless love and
support even though we are far away. I love you;-). I also want to thank my cats,
cola, dragon and tiger, for their love (I assume). Luckiness is mine to meet you,
Wei! Thank you for your indispensable support during my journey to a PhD and
for always being with me.

	lu_thesis_cover_digital.pdf
	title_page_first.pdf
	New Microsoft Word Document.pdf
	title_page
	PhD_Thesis_0920.pdf
	Introduction
	Research questions
	Thesis outline and contributions
	Publications
	Source code

	Select infrastructures with collaboration relationship modelling
	Introduction
	Digital Data Marketplace and collaboration models
	Archetypes
	Application request

	Modelling of multi-party collaborations
	Selection of collaboration archetypes in a DDM
	Algorithm overview
	Stage I: filtering with hard requests
	Stage II: distance calculation and archetype selection

	Evaluation metrics of a DDM
	Coverage
	DDM extensibility
	Application extensibility
	Precision
	Flexibility
	Intelligent selection algorithm

	Performance evaluation and results analysis
	Spatial distribution and mutual distances
	Metrics evaluation from DDM provider perspective
	Intelligent selection of DDMs

	Related work
	Conclusions and future work

	Risk assessment framework
	Introduction
	System architecture
	Module I: Application-oriented threat identification
	Mapping between Microsoft STRIDE model and security features
	Applications of DDM-governed data exchange
	Threat modelling

	Module II: Risk assessment of an individual threat
	Original DREAD model
	Modified DREAD model for DDMs

	Module III: Risk mitigation and risk level evaluation
	Security countermeasures matching and threat mitigation
	Total risk level of an application

	System stability due to subjective choices
	Physical effect of value vectors
	Metrics definition

	Experimental validation of system stability
	Experimental design
	Experimental threat database
	Analysis of Kendall's Tau values
	Analysis of normalised mean square error (NMSE)

	Experimental validation of system resolution
	Definition of granularity and experimental design
	Analysis of granularity values

	Related work
	Conclusions and future works

	Policy compliance detection with syscall profiling
	Introduction
	Architecture
	Profile generation
	Classic n-gram profiles and limitations
	Profiling with n-gram frequency distributions
	Self variance and mutual distance
	Stability of proposed methodology
	Stability over different platform OSs
	Stability over different training data sets

	Classification accuracy
	Procedure
	Results

	Discussion
	Related work
	Conclusions and future works

	Real time intrusion detection systems
	Introduction
	System description
	Detection engine
	Pre-processing module
	Anomaly detection module
	Anomaly analysis module

	Experimental dataset construction
	Dynamic applications: CouchDB and MongoDB
	Static application: machine learning applications

	Experimental design
	Segmentation length
	Feature extraction
	Kernel functions
	Evaluation metrics

	Performance of anomaly detection module
	Performance of anomaly analysis module
	Related work
	Conclusions and future works

	Defending against poisoning attacks for IDS
	Introduction
	Background
	Poisoning strategies
	Nearest first attack
	Furthest first attack
	Adversarial label flips attack (ALFA)

	The data sanitization with DBSCAN
	The DBSCAN clustering algorithm
	Sanitization flowchart

	Experiments and dataset
	Dataset
	Experimental design

	Results analysis of performance degradation and improvement after sanitization
	Performance degradation
	The effectiveness of the sanitization process

	Influences of distance metrics and dimensionality reduction techniques
	Related work
	Conclusions and future works

	Conclusions and future works
	Answers to research questions
	Future works
	Improve the anomaly-based IDS
	Improve the sanitization mechanism

	Bibliography
	Publications
	Summary
	Samenvatting
	Acknowledgements

