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Abstract—The increasing value of data and the emergence
of programmable infrastructures have paved the way for col-
laborative multi-domain applications across industries such as
healthcare and airlines. However, such collaborations come
with significant challenges, including application coordination,
incentivization, and validation of execution. In this paper, we
propose a novel solution that leverages blockchain technology and
utilizes Petri nets for workflow modeling. Our approach involves
implementing a smart contract-based workflow coordinator on
the blockchain and employing a three-layered architecture to
coordinate off-chain tasks. Additionally, we demonstrate the use
of Petri nets for modeling economy tokens, which serve as
incentives to foster collaboration among workflow parties. To
validate our solution, we present a proof of concept through
a simulated use case involving a multi-domain workflow for
mitigating a DDoS attack. In this use case, domains collaborate by
blocking offending IPs, incentivized by acquired tokens required
to invoke workflows.

Index Terms—Petri net, Hyperledger, blockchain, workflow,
smart contract, incentives

I. INTRODUCTION

In the past decade, blockchain-based smart contracts have
rapidly developed and have been widely applied in industries,
varying from finance [3], internet of things(IoT) [4], [5],
supply chain [6], [7] to electronic health [8]. To leverage
blockchain-based smart contracts to enforce multi-domain
workflows, protocols [9] or policies [10], [11], we first need to
model and verify smart contracts at the contract-level [12] to
ensure that the translated functions describing the interactions
among domains can precisely express the norms. Secondly,
we need to execute the smart contract safely, which requires a
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collaborative infrastructure that can execute the applications in
the workflows (also called applications) at the program-level.

However, even if these two requirements are satisfied, non-
compliant behaviors can still occur during the execution of the
workflow, particularly when the workflow involves tasks that
must be executed off-chain, since these off-chain tasks are not
visible to all parties involved in the workflow execution. To ad-
dress this challenge, one approach is introducing triggers to re-
ceive and send messages between on-chain smart contract and
off-chain interfaces, by this way, triggers connect blockchain
to the internal process of domains and further enforce the
regulated workflow [13]. In reality, however, domains may
still choose to deviate from regulations even after receiving
messages from the blockchain, motivated by maximizing their
own utilities. For example, they might terminate certain off-
chain tasks that have been triggered while claiming that the
tasks have been well executed.

In such circumstances, incentives, which enable the pun-
ishment and reward of domains based on their past perfor-
mance, have great potential to be deployed within the smart
contract. By incorporating incentives at the contract-level, the
adherence of parties to executing on-chain and off-chain tasks
can be enhanced, fostering cooperation and trust among the
involved parties. Therefore, the requirements for blockchain-
based smart contracts are as following:

• Contract-level: map, encode, verify, and coordinate the
tasks within the workflow, while ensuring parties are
incentivized to fullfill their tasks, especially the off-chain
ones

• Program-level: build collaborative infrastructure that is
capable for identity management, data-flow management,
and control-flow management

In this work, we propose a solution that leverages Petri net
and blockchain technologies to coordinate multi-domain work-



flows with incentives integrated, meeting the requirements of
contract-level and program-level. The remainder of this paper
is organized as follows: Section II introduces the fundamental
concepts involved in the one-box solution; followed by the
concrete deployment of the blockchain-based Petri nets in
Section III; in Section IV, we illustrate the functionality of
the proposed solution through a distributed denial-of-service
(DDoS) use case. Finally, we conclude the findings and
compare our solution with related works in section V.

II. PRELIMINARIES

A. Blockchain and Smart Contract

Blockchain is a distributed ledger of blocks that preserves
the integrity and immutability of data. All blocks are linked
by cryptographic hashes that contain information from the
previous block, the timestamp, and transaction data, allowing
to create immutable chains of blocks. The key feature of
blockchain technology is the ability for each party to maintain
a consistent copy of the blockchain. This mechanism enables
multiple domains to transact without the need for a trusted
central server.

The functionality of blockchain is extended and expanded
with the emergence and development of smart contracts. As a
computer protocol designed for executing applications, smart
contract can maintain the workflow among multi-domain when
coupled with blockchain [15]. Consequently, the combination
of smart contracts with blockchain technologies has made it
possible to enforce more complex rules, contracts, and policies
among multiple domains meanwhile tracking the progress of
execution.

Blockchain-based smart contract has been widely and
rapidly developed [2]. The foundation of blockchain-based
smart contracts is built on four key components as illustrated
in Figure 1: smart contracts, which enable the execution
of complex agreements by automating the processes and
enforcing the tasks in the workflow; ledger, which provides
complete and immutable records shared by all the peers;
wallets, which utilize a Public Key Infrastructure(PKI) system
to allow users access to the ledger, and assign ownership of
ledger records using key signatures; and consensus, which
ensures the agreement of peers regarding the ledger. These four
components work together to create a secure and decentralized
system for executing agreements across multiple domains.

It is worth noting that since all parties update the same
ledger, there is a potential risk of breaking consistency. Con-
sensus itself can be an attack vector, for example in Sybil
attack, where a peer controlling the ordering can control what
gets written. To mitigate the risk, most public blockchain
setups apply proof-of-work consensus, which requires an
attacker to control more than 50% of the compute power to
control the network [16]. Proof-of-work consensus provides
higher security at the cost of high computational power.
However, in less malicious environments, traditional consensus
such as Paxos or Raft can be used [17] to decrease costs. In
this study, we consider the scenario that all parties intend to
collaborate and have a semi-trustful relationship with other

Fig. 1. Four pillars of the blockchain-based smart contract: smart contract,
ledger, wallets, and consensus. The life cycle of smart contracts consists
of three phases: generation, deployment, and execution. Starting from the
deployment phase, the completion of every activity or operation is recorded
as a new block on the public ledger. The successful recording relies on wallet
and consensus. The wallet uses a public key infrastructure system, enabling the
identification of block creator. Meanwhile, the consensus algorithm ensures
that all parties agree on the records on the public ledger.

peers. Hence, we leverage Hyperledger default consensus
algorithm which is Raft.

B. Petri Nets

As Figure 1 illustrates, smart contract generation is the
starting point of smart contract life cycle. At this phase,
the physical contract needs to be mapped and encoded into
executable codes, where the properties of interactions and
the external environment can to be expressed and verified.
Approaches such as process algebras [18], set-based meth-
ods [19], and state-transition systems [20] are commonly used.
Considering the aim of this work, and the fact that state-
transition systems can naturally model the business artifacts
in process-oriented contracts, we choose the state-transition
systems to map and verify the workflow among the domains.

Petri net is a representative state-transition language pro-
posed by Carl Adam Petri [21]. They consist of three funda-
mental elements: places, transitions, tokens, and arcs which
enable Petri nets to model the process in workflows, policies,
or protocols. Figure 2 gives an example of a classical Petri
net. A Petri net is a graph of places and transitions. Places are
token holders and transitions move token from input places
to output places. A transition can be considered as an action
and is connected to input/output places by arcs. When all
input places have sufficient tokens, the following transition
will be fired, during which the actions that represented by the
transition is executed. Subsequently, new tokens are generated
by the fired transition, and placed in all the output places of
the fired transition. The distribution of tokens among places is
called a marking, which denotes the current state of the net.



Fig. 2. The Petri net is a state-transition language used to concurrent
processes, consisting of three fundamental elements: tokens, places, and
transitions. Places are connected by transitions. A transition is fired when
all input places have the necessary amount of tokens (classically it is one
token). On firing a transition, tokens are produced in all output places of the
transition. Markings, which record the current distribution of tokens, reflect
the state of the Petri net.

Petri nets not only have the advantages in intuitively rep-
resent the entire workflow as well as the real-time process
state, but also have well-defined mathematical properties such
as reachability, liveness, deadlock and boundedness which can
be used for verifying the correctness of the application. In [22]
the mathematical properties are used to enhance the security
of smart contracts. Petri nets have been applied in coordinating
multi-domain workflows, for example [23] applied an extended
Petri nets that equipped with Oracle interfaces to cope with
workflows that require external data. As Figure 2 shows,
when the external requirement is satisfied, Oracle interface
can put the token into places and trigger the associated tasks1.
However, the off-chain tasks are not limited to data access
control, some complicated tasks might cannot be completely
enforced. For instance, in a supply chain workflow, a man-
ufacturer may fail to deliver the product to the wholesaler,
but still declare and add the record of “task accomplished”
on the blockchain. Such deviation to the workflow might lead
to the collapse of cooperation. Therefore, this work aims at
implementing incentives into the workflow that modelled by
Petri nets for further enhancing the enforcement of off-chain
tasks in multi-domain workflows, and promoting cooperation
and trust among parties.

C. Token Economy

Token economy is prevalent in behavior modification pro-
grams in social science [24], [25]. These programs typically
consist of three essential components: the target behaviors that
wish to reinforce; the tokens earned for engaging in those
behaviors; and the back-up reinforcers that can be obtained
by exchanging tokens as rewards. For example, in a supply
chain workflow, a wholesaler may incentivize manufacturers

1There are many variations of Petri nets, in our work we limit the usage
of classic Petri nets to model workflow-like applications.

to deliver products on time by awarding badges to who
consistently perform the desired behavior. Manufacturers with
the highest number of badges are then rewarded the privilege
of extending the cooperation period. In this example, the
badges are tokens, and the privilege of extending cooperation
period is the back-up reinforcer.

It is important to note that the term “token” in the context
of “Token Economy” has a different definition and functions
than in Petri net. In token economy, a token is an abstract
concept that can take the form of any objects or symbols that
work as secondary enforcers. Tokens themselves are worthless,
but they can be exchanged for other valuable things. Hence,
participants are motivated to engage in desired behaviors to
earn tokens. The primary function of tokens in token economy
is serving as a intermediary in enforcing incentives. In contrast,
in Petri net, tokens are a fundamental element that triggers
the firing of transitions. They do not serve as incentives but
are essential for executing tasks. Without tokens, transitions
cannot be fired, and tasks cannot be performed. To distinguish
these two types of token, we denote the secondary enforcers
in Token Economy as E-tokens, and the ones in Petri nets as
tokens.

In this work, we realize token economy by employing a
peer-audit based E-tokens assignment process in the classical
Petri nets. More concretely, parties involved in the blockchain
are audited by their peers. Those who successfully complete
their on-chain and off-chain tasks have a higher chance of
being assigned E-tokens. For the first cooperation, each party
is assigned one E-token by default. E-tokens are required to
authorize and activate the Petri nets, hence only parties with
E-tokens can participate in the workflow. As being involved in
the workflow is valuable for participants, the opportunity for
future involvement serves as a backup reinforcer to incentivize
the cooperation of parties. We refer to these token economy
implemented workflow as “incentive-integrated workflows”.

Incentive-integrated workflows not only encourage parties
to fulfill their tasks in the workflow but also encourage
cooperation by incentivizing the validation of the peers and
rewarding correct execution of workflow tasks. In the follow-
ing section, we present detailed steps of implementing our
incentive-integrated workflows using Petri nets for modeling
and coordinating multi-domain applications.

III. INCENTIVE-INTEGRATED WORKFLOWS ON
HYPERLEDGER

In this section, we first illustrate how we integrate “E-token
assignment” in Petri nets, and then introduce the three-layer
architecture that enables Petri nets to coordinate the on-chain
and off-chain tasks involved in incentive-integrated workflows.

A. Incentive-integrated Workflows

A classical workflow describes the schedule of tasks needed
to complete the application. In our incentive-integrated work-
flows, we include an additional stage called the “incentive
stage” before the workflow is completed, as shown in Figure 3.
The incentive stage is for generating and assigning E-tokens,



it consists two types of transitions: “peer audit” transitions
and “E-token assignment” transitions. As shown in Figure 3,
when generated tokens are placed in “P1” and “P2”, “peer
audit” transitions are triggered

In each peer audit transition, the parties decide whether to
assign an E-token to the party being evaluated based on their
own observation of that party’s task execution. For example,
in a supply chain workflow, if the wholesaler observes that
the manufacturer did not delivery the products as regulated,
despite the manufacturer’s claim of doing so, the wholesaler
has the authority to withhold the assignment of an E-token to
the manufacturer.

The Petri net records the successful peer audit transitions
through its token mechanism. When the E-token assignment
transition has tokens in all its inputs it will be fired and
generate an E-token for the party under evaluation. The E-
token is automatically translated to an authorization token
which is needed to start the whole workflow in the first place.

Various aggregation algorithms for the final E-token assign-
ment decision can be implemented, such as “veto power” [26],
“majority rule” [27], etc. The concrete aggregation mechanism
can be implemented by designing the E-token assignment
process of Petri nets. For example, in both Figure 3 and
Figure 6, the veto power is implemented: only when all other
parties have vote for the party under evaluation, it will be
rewarded with one E-token. After completing the peer audit
and E-token assignment transitions, the marking of the Petri
net finally reaches the end places.

For the first round of the workflow, E-tokens are auto-
matically assigned to all parties by default. However, for
the subsequent rounds of the same workflow, E-tokens are
assigned based on the aforementioned E-token assignment
process. As a result, parties who gain E-tokens can participate
in the next round of cooperation, while parties who receive
no E-tokens are excluded from future rounds of cooperation.
This peer monitoring mechanism ensures that tokens serve as
timely feedback on the behaviors of the involved parties, which
encourage them to complete their off-chain tasks fully and
contribute to the workflow in an honest manner. Incentives
are hence integrated in the workflow using Petri nets to model
it. The following section elaborates on how to deploy and
realize this incentive-integrated workflow at the program-level,
especially involving multiple domains on the blockchain.

B. Implementation on Hyperledger

Blockchain technology provides a shared and transparent
ledger, which enables all parties involved in a workflow to
track the progress of the workflow in real-time. Additionally,
blockchain provides a platform for executing on-chain tasks,
such as calculation, verification, authentication, and others.
However, for complicated workflows, a central broker is
often necessary to coordinate the multi-domain composition
of tasks. One popular approach for achieving this coordination
is choreography, where a smart contract acts as a broker to
invoke applications and monitor tasks [28]. In this work, we
use Petri-nets as the broker of the choreography, allowing for

Fig. 3. An example of incentive-integrated workflows. There are two stages
in the workflow, the “work stage” and the “incentive stage”. Within the work
stage, the first two transitions correspond to two off-chain tasks executed
respectively by the involved two parties, distinguished by the colors deep
green and light green. After these two workflow transitions are fired, tokens are
generated and placed in “P1” and “P2”. Peer audit transitions in the incentive
stage are then triggered, where parties decide whether assign E-tokens to each
other. Since only two parties are involved, each of them is then evaluated
by the other. If parties decides to assign an E-token to the being evaluated
one, new tokens will be generated and placed at places “P3” or “P4”, which
trigger the subsequent on-chain E-token assignment transitions. Consequently,
the Petri net reaches the end place. Only parties who have received tokens
are able to authorize and activate the next round of the workflow.

a decentralized coordination of both on-chain and off-chain
tasks. In the following, we introduce how we deploy incentive-
integrated workflow on blockchain and how we use Petri net
to enable the decentralized coordination of the workflow tasks.

1) Map Petri nets to smart contracts
In this work, we use Hyperledger2 as the basis of

our blockchain technology. Hyperledger is an open source
blockchain technology with comparable functionalities to
other smart-contract able public blockchain such as Etherium.
A main difference with public blockchain is that Hyperledger
is a permission-based blockchain meaning that anyone can
setup a private ledger using the concept of channels. This gives
us the ability to setup private ledgers specific to consortia
collaborations and allows the setup of semi-trusted environ-
ments. In Hyperledger, smart contract functionality is sup-
ported through the concept of chaincode, which are JavaScript
or Go scripts running as peers in the different domains.
Chaincode allows us to map Petri nets to smart contracts.
This is achieved by implementing a Petri net executor as a
JavaScript chaincode.

The Petri net executor exposes functions that modify the
Petri net such as the function PutToken() which puts a token
in a place. This function will (after putting a token) analyse
the Petri net to find which transition(s) need to be fired and
generates firing event(s). Event(s) will trigger the off-chain
functionality which in-turn triggers more movement of tokens.

The actual Petri net graph is modelled as a set of assets
on Hyperledger. These assets are: tokens, places, transitions
and arcs as introduced in Section II-B. To make our Petri net
function like a workflow we have two types of tokens: data-

2www.Hyperledger.org



tokens which carry data and pass data between transitions/-
tasks; auth-tokens which act as authorization tokens and are
the product of the E-token incentive phase. One of the initial
places of the Petri net is designed to accept only auth-tokens,
effectively limiting the parties who can execute the Petri net.
Since any element of a Petri net is modelled as an asset this
also means that tokens, places, transitions and arcs are owned
by organizations. This ownership introduces an extra level of
control e.g. an auth-token cannot be generated by the party that
it belongs to, but has to be generated by an other party and
then transferred. Similarly, transitions can only be modified by
the party who owns them.

Places are typed, they can either accept auth-tokens or data-
tokens. Tokens can be reusable or disposable (by default).
This means when a token is used to fire a transition, its state
becomes USED and can not be used anymore (need auth-
tokens) while data-tokens can be set to reusable so that the
same token can be used in multiple runs of the workflow.
Transitions have an associated function to execute as part
of the transition. This would be the actual workflow-task
modelled by the transition. The architecture implements a
plug-in architecture to extend the functionality of tasks. E.g.
a Docker plug-in is able to run off-chain tasks in Docker
containers.

To deploy Petri nets on the blockchain (as presented in the
Deploy Phase of Figure 1), parties need to define the four
fundamental elements of Petri nets: places, transitions, tokens
and arcs. This is done using a JSON file where each element
is described and its parameters defined (e.g. owner). These
elements are considered as private asset of the parties. For
instance, an organization can define the required number of
tokens in the input places of a transition; and the number of
generated tokens and output places of a transition. In this way,
complicated workflows can be mapped to Petri nets. Once Petri
nets are well defined, they can be deployed on the blockchain.
However, since workflows can involve on-chain and off-chain
tasks, to trigger the off-chain applications, the blockchain layer
and the infrastructure layer needs to communicate. To achieve
this, a three-layer architecture, as shown in Figure 4, is used
to coordinate multi-domain workflows involving both on-chain
and off-chain tasks.

2) Three-layer architecture
Figure 4 presents the three-layer architecture composed of

blockchain layer, network layer, and infrastructure layer. On
the blockchain layer, a Petri net is deployed as a smart contract
on the Hyperledger. Parties with wallets can invoke functions
on the smart contract, updating the ledger with markings
that represent the progress of workflow execution through the
distribution of tokens; and can also listen for specific markings,
such as firing events and then trigger the corresponding off-
chain tasks at the proper time.

Since parties are in possession of a wallet (private/public
key), they can sign any off-chain action with their key, thus
any off-chain activity can validate the command is issued by
the correct wallet/organization. The party is also responsible
to call back to the ledger once the off-chain task has been

completed by calling a CompleteTransition() function which
will put tokens in the output places of the transition. The
transactions are recorded to the ledger and the execution of
the Petri net continues.

The parties’ blockchain interface clients (programs with
wallets talking to the blockchain) collectively form a bridge
between the on-chain and off-chain, and we denote this bridge
as the network layer. The network layer serves as a bridge be-
tween the blockchain layer and the infrastructure layer where
off-chain tasks are executed. To enable the interaction between
these two layers: system architecture including hardware and
software of parties at the network layer keeps listening, and
executes the off-chain tasks once monitors the corresponding
input places are placed tokens; after the off-chain task is
completed, the latest marking is recorded as a new block and
linked to the Hyperledger on the blockchain layer. Wallets used
by the different parties in the network layer help keep track
of who did what as recorded in the ledger. This tamper-proof
synchronization of the markings enables all parties to easily
track the progress of the workflow. The interaction among
these three layers ensures the coordination and tracing of on-
chain and off-chain tasks in the workflow(Figure 4).

Fig. 4. The three-layer architecture for coordinating multi-domain workflow
using Petri Nets. In this architecture, Petri nets depicting the abstract multi-
domain workflows are deployed on the blockchain layer. When executing
Petri nets, the completion of each task accompanies with new tokens being
generated and corresponding markings being created and linked to the existing
blocks. When the tasks are executed off-chain, the Hyperledger is updated
through the network layer. Meanwhile, the network layer allows off-chain
architecture components to listen to the latest markings on the blockchain
layer, enabling domains to execute tasks at the appropriate time. In this
manner, this three-layer architecture realizes a decentralized and transparent
choreography of multi-domain workflows.

Noteworthy, in order to enhance the security and ensure the
confidence among parties, our solution includes an activation
step after deploying the Petri net. This step requires all parties
to authorize the deployed Petri nets by signing the Petri net
(the arcs asset on Hyperledger). Because unlike a singular
domain where places, transitions, and tokens are owned by
one domain, in a multi-domain Petri net, these three elements
are owned by different domains. It necessitates the agreement
of all parties on the Petri net. Therefore, the activation step
ensures a global agreement.

So far, we discussed the deployment and execution of
incentive-integrated workflow. In the next section, we illustrate
the application of our in-box solution through a concrete use



case, where an alignment of semi-trust parties cooperate to
enforce a designed workflow for mitigating DDoS attacks.

IV. A DDOS USE CASE

A distributed denial-of-service (DDoS) attack is a type of
services attack that overloads a system by flooding it with
requests, preventing legitimate requests from being executed.
One of the challenges in containing DDoS attacks is that
blocking the detected IP address of the malicious host is
always not enough for the attacked domains. The illegitimate
requests can easily break the block from other unblock legit-
imate domains since domains are connected [29]. Therefore,
one possible solution is building an alliance where members
can share information and block the illegitimate IP addresses
at the same time [30]. In our use case, we assume there is
such an semi-trust alliance to prevent DDoS attacks through
the following protocol:

When a certain sensor in domain ‘A’ is attacked by
an illegitimate IP address, ‘A’ needs to block the IP
address and notify other members in the alliance,
who have the obligation to block the illegitimate IP
address after receiving the notification.

This protocol outlines the workflow for a semi-trust alliance
to mitigate DDoS attacks. We first map this workflow into
an Petri net, and then simulate its enforcement. In our use
case, the alliance consists of three domains, represented by
different colors in Figure 5. When a malicious host attacks a
domain, the domain triggers the activated Petri net by placing
its auth-token at the start place. The subsequent transition,
notifying alliance members with the illegitimate IP address, is
then fired, followed by the generation of new tokens placed
at the output places of the transition. The next three parallel
transitions represent the blocking the IP address for each
domain. Although these transitions are fired in one sequence in
Figure 5, they can be executed in different orders in practice.
Each transition results in generated tokens and markings,
followed by the incentive stage.

To ensure the successful mitigation of DDoS attacks, it
is crucial that all members of the alliance adhere to the
predefined workflow. To motivate semi-trust members to fulfill
their obligations, we implement incentives by integrating an
incentive stage, which composes of the auditing transition
and the E-token assignment transition, into the workflow.
In the auditing transition, each domain is evaluated by the
other domains in the alliance. Only if all other domains vote
to assign, can the subsequent on-chain E-token assignment
transition be triggered, and the evaluated domain receive an
E-token. Similar to the blocking transitions, the peer audit
transitions of all domains are parallel and can be accomplished
in any order in practice. For simplicity, Figure 6 only presents
the incentive stage of the attacked domain, the incentive
stage of the other two domains are similar. Ideally, after the
incentive stage, the dishonest domains will receive no E-
tokens (namely no auth-tokens). Consequently, by such in-time
feedback on performance, domains are motivated to be honest
and responsible.

Fig. 5. The choreography of workflow in a semi-trust alliance leveraging the
three-layer architecture. First, the workflow of the DDoS-resistant protocol is
mapped to a Petri net and deployed on Hyperledger. When a malicious host
attacks a domain, the domain triggers the activated Petri net by placing its
token at the starting point. This initiates the subsequent transition to notify
alliance members of the illegitimate IP address, followed by the creation of
a new token at the output place of the transition. When the corresponding
new marking published on the Hyperledger, alliance members can listen to
it through the network layer and execute the following parallel transitions,
referring to blocking the IP address. Each completed transition generates
tokens which trigger the subsequent peer audit transitions in the incentive
stage.

Fig. 6. The incentive stage of Petri net in the DDoS use case. Two types of
transitions are involved in this incentive stage, 1) peer audit transitions, where
parties are audited by other cooperators who decide whether to vote; 2) E-
token assignment transitions, in which the evaluated parties are assigned auth-
tokens. But whether the E-token assignment transitions are triggered depends
on both the voting decisions of parties and the design of the aggregation
algorithm. For example, in this case we implement the veto power to aggregate
the result of peer audit by requiring two tokens to trigger the E-token
assignment transitions. Only when both the other two parties vote will the
evaluated party be assigned an auth-token.

To simulate the DDoS use case we are using Kathara
network emulator3 to create a hypothetical Internet scenario.
Kathara emulates a network as a set of Docker containers,
where each device (e.g. router, web-server) is a container
and collision domains are Docker networks. This enables a
functioning network where we can interact with the actual
devices at the infrastructure layer. To connect the infrastructure

3www.kathara.org/



layer to the blockchain layer, we use an MQTT4 message
queue at the network layer. Parties’ blockchain interface clients
at the network layer sign and send commands to the MQTT
server/s which are subsequently picked up by the router
devices in the Kathara emulator. The devices have a white list
of public keys to verify the signature of the command. Upon
validation of the signature the device proceeds to execute the
command (update routes to block IP).

Our use-case employs a Petri net workflow, where each
party corresponds to an Internet Autonomous System (AS).
Each AS manages its own network router, forming an inter-
connected network for Internet traffic. The workflow directs
ASs to block offending IPs on their routers when an attack is
detected by any party. Collaboration comes into play because
tokens owned by a number of parties are signalling other par-
ties to trigger transitions. Following router transition actions,
a two-step cross-validation process ensures successful off-
chain actions. First, an application-specific off-chain routine
is executed, followed by ledger updates. It’s worth noting that
in our demo, we haven’t yet implemented the off-chain routine,
which would involve one AS verifying another’s IP blocking,
requiring additional infrastructure monitoring services. The
validation steps yield authorization tokens that enable parties
to participate in the subsequent invocations of the workflow.
The code for the demo is available online5

V. CONCLUSION AND DISCUSSION

To enforce and coordinate multi-domain workflows, map-
ping predefined tasks to smart contracts on the contract level
and building collaborative infrastructures in the program-
level are two unavoidable requirements. To satisfy the first
requirement, this work generates smart contracts based on
Petri nets, due to their advantages in workflow descriptiveness
and process logic verification. For the second requirement,
we construct a three-layer architecture where the blockchain
layer serves as a trusted storage of the smart contract and the
execution state of the workflow; at the infrastructure layer,
the private system architecture of domains can be triggered
at the proper time to execute the corresponding activities by
listening to the state of the workflow through the network
layer. Once domains accomplished activities, corresponding
new blocks that record the latest state of the workflow will
be added to the blockchain. Accordingly, our proposed solu-
tion enables a in-time tractable and auditable multi-domain
workflow coordination.

Lots of explorations have been made in utilizing blockchain
in facilitating secure inter-organizational workflow [32]. Since
2016, Weber et al., has proposed an approach that uses Solidity
smart contract to execute multi-domain workflow [13], [33],
where the smart contract is deployed on-chain and works
as a centralized mediator or choreography monitor. Instead
of focusing on monitoring and mediating, [34] proposed the
framework “ChorChain” for better enforcing and auditing the

4mqtt.org
5doi.org/10.5281/zenodo.8341111

activities in the workflow through event-based gates to allow
only conforming operations being executed, and providing
records retrieval interfaces for users. Some other works focus
on multi-domain confidential data sharing within workflow, for
example, [31] proposed an “Encrypter” framework ensuring
data integrity and the confidentiality of data exchanged on the
blockchain, where data exchange is encrypted and can only
be decrypted by authorized organizations. [28], in contrast,
addressed the challenge of enforcing access control policies
by managing the data access authorizations in the coordination
layer implemented on the blockchain framework.

These approaches can handle workflows that involve on-
chain tasks, such as data storage and computation, as well
as tasks that require off-chain data access. However, some
off-chain tasks are difficult to monitor or enforce using these
approaches. For example, in the use case of DDoS attack, it is
challenging to guarantee that domains adhere to the protocol
that blocking the illegitimate IP address, even if domains
declare their accomplishment of the task by creating new
markings on the Hyperledger. This is an inherited limit of
smart contracts. To address this issue and facilitate cooperation
among such semi-trust domains, we integrate an incentive
stage into traditional Petri nets, where each party is audited
by their peers. Non-compliant parties that fail to fulfill their
obligations are less likely to receive E-tokens, and further
lose their chance for future collaboration since E-tokens are
required to activate Petri nets. Notably, when a Petri net is
deployed for the first time, E-tokens are by default assigned
to every party. This mechanism eliminates non-compliant
domains and encourages domains to be honest and compliant,
thus improving the mutual trust among parties.

To conclude, implementing the Petri net on the three-
layer architecture can choreograph multi-domain workflow and
enforce the predefined tasks to a greater extent, where on-chain
tasks are enforced by smart contract, while off-chain tasks
are incentivized through E-tokens. Additionally, our solution
records the state of the workflow on the Hyperledger in real-
time, providing the benefits for tracking and post-auditing. To
the best of our knowledge, this is the first work that executes
Petri nets with incentives into smart contracts in multi-domain
workflow coordination. Our solution can be applied to various
workflows involving hard-to-enforce tasks, such as those in
the internet of things, supply chain management, or federated
learning.

It is important to note that although we use peer-auditing
to monitor semi-trust parties, this approach relies on the
assumption that failures to adhere to the workflow can be
observed by the parties. For example, in our use case, a domain
that fails to block the illegitimate IP address in an DDoS
attack may impact other domains, enabling other domains
to recognize and evaluate their peers’ performance. However,
there are instances where non-compliant behaviors may not
be immediately recognized due to their high concealment
or delayed impact. In such cases, our integrated incentives
cannot give effective feedback. To address this limitation,
external auditing system implementing incentives may be nec-



essary. Nevertheless, the Hyperledger which records domains’
declared successful activities still benefits the post-auditing
process by recording the asserted accomplished activities.
Therefore, our solution can be considered as a complementary
approach to existing solutions in further enforcing off-chain
workflow activities.

Another limitation of the solution is the simplification of
the aggregation algorithm in the E-token assignment, the veto
power that we implemented may result in the honest and
reliable domains being squeezed out if any of the parties
maliciously give poor evaluation. To avoid this risk, future
work should explore more comprehensive aggregation algo-
rithms. Additionally, inspired by previous work [35], where
a reputation system is built, and only domains have high
reputation is able to build the Hyperledger, we suggest that
another way to address the E-token assignment matter is to
build an independent reputation chain and allow domains to
select collaborators based on the reputation chain. This would
encourage domains to behavior well for maintaining a good
reputation and increasing their chances of future cooperation,
while also prevent domains from being completely deprived
of the opportunity to collaborate.
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