
An Agent-based Approach to
the Governance of Complex
Cyber-Infrastructures

{

}

Mostafa Mohajeri PariziAn
 A
ge
nt
-b
as
ed
 A

pp
ro

ac
h

to
 t

he
 G
ov
er

na
nc

e
of

 C
om

pl
ex

 C
yb

er
-I

nf
ra

st
ru

ct
ur

es
M.
 M
oh
aj
er
i
Pa
ri
zi

ISBN: 978-94-6473-443-0

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 1PDF page: 1PDF page: 1PDF page: 1

An Agent-based Approach

to the Governance of

Complex Cyber-Infrastructures

Mostafa Mohajeri Parizi

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 2PDF page: 2PDF page: 2PDF page: 2

This work has been done as part of the Dutch Research project Data Logistics
for Logistics Data (DL4LD), supported by the Dutch Organisation for Scientific
Research (NWO), the Dutch Institute for Advanced Logistics TKI Dinalog (http:
//www.dinalog.nl/) and the Dutch Commit-to-Data initiative (http://www.
dutchdigitaldelta.nl/big-data/over-commit2data) (grant no: 628.009.001).

Printed and bound by Ipskamp printing.

ISBN: 978-94-6473-443-0

https://www.dinalog.nl/
https://dutchdigitaldelta.nl/big-data/over-commit2data

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 3PDF page: 3PDF page: 3PDF page: 3

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 4PDF page: 4PDF page: 4PDF page: 4

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 5PDF page: 5PDF page: 5PDF page: 5

to everyone

who has ever taught me something

v

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 6PDF page: 6PDF page: 6PDF page: 6

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 7PDF page: 7PDF page: 7PDF page: 7

Contents

Acknowledgments xi

1 Introduction 1
1.1 Motivation and Research Questions 6
1.2 Approach and Scope of Dissertation 8
1.3 Research Context and Collaborations 12
1.4 Structure of the Dissertation . 13

2 Developing a Scalable MAS Framework 15
2.1 Introduction . 15
2.2 Background . 16

2.2.1 Agent Oriented Programming 16
2.2.2 Belief-Desire-Intention (BDI) Model 17
2.2.3 Actor Model . 17
2.2.4 Related Work . 18

2.3 AgentScript Cross-Compiler (ASC2) 19
2.3.1 ASC2 DSL . 19
2.3.2 ASC2 Run-time Architecture 20
2.3.3 Translation Method . 24
2.3.4 Tools for Execution . 31

2.4 Performance Analysis . 31
2.4.1 Token Ring . 32
2.4.2 Chameneos Redux . 35
2.4.3 Service Point . 38

2.5 Discussion . 40
2.5.1 Performance . 40
2.5.2 Language . 41
2.5.3 Execution and Parallelism 41
2.5.4 Access to the Lower-Level Language 41

vii

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 8PDF page: 8PDF page: 8PDF page: 8

2.5.5 Communication . 42

2.6 Conclusion . 42

3 Transparent Decisions in Social Actors: Preferences 43

3.1 Introduction . 43

3.2 Background . 44

3.2.1 Abstract Plans in BDI Agents 44

3.2.2 Preference Languages . 45

3.3 Method . 47

3.3.1 AgentSpeak(L) Agents . 47

3.3.2 Abstract Events, Abstract Goals 49

3.3.3 CP-Nets and CP-Theories 51

3.3.4 Goal Refinement via Preferences 55

3.4 Implementation . 58

3.5 Discussion and Conclusion . 61

4 Interoperability and Automated Tests: DevOps 63

4.1 Introduction . 63

4.2 Verification of (Multi-)Agent Systems 65

4.3 Approach . 67

4.3.1 Testing Approach . 68

4.4 Illustrative Example . 70

4.4.1 Unit/Agent Testing . 70

4.4.2 Coverage . 73

4.4.3 Integration/System Testing 74

4.4.4 Continuous Integration . 75

4.5 Discussion and Conclusion . 76

5 Introducing Norms to Agents: Normative Advisors 79

5.1 Introduction . 79

5.2 Core components . 81

5.2.1 Intentional agents . 82

5.2.2 Norms and Normative (Multi-Agent) Systems 82

5.3 Normative MAS via Normative Advisors 85

5.4 Implementation . 87

5.4.1 Normative advisor architecture and decision-making cycle . 88

5.4.2 eFLINT norm base implementation 89

5.4.3 Spawning and interacting with advisors 91

5.5 Discussion . 93

5.6 Conclusion . 96

viii

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 9PDF page: 9PDF page: 9PDF page: 9

6 Example 1: Coordination in MAS via Norms 97
6.1 Introduction . 97
6.2 Background . 98

6.2.1 Compliance Management Framework 99
6.3 The Model of DMPs . 100
6.4 Executable Model of Data Market-Place 102

6.4.1 Implementation of the Model 103
6.5 Model Execution and Discussion 107
6.6 Conclusion . 111

7 Example 2: Qualitative, Quantitative, and Normative Reasoning113
7.1 Introduction . 113
7.2 International Humanitarian Law rules 114
7.3 The Model . 114
7.4 Decision-making . 116
7.5 Example Model of Normative Autonomous Devices 117

7.5.1 Scenario . 117
7.5.2 Implementation . 118

7.6 Model Execution and Discussion 123
7.6.1 Execution Results . 125
7.6.2 Discussion . 126

8 Conclusions and Future Work 129
8.1 Motivation . 129
8.2 Summary . 130
8.3 Research Results . 132
8.4 Discussion, Limitations and Trade-offs 138
8.5 Future Works . 141

8.5.1 Macro System Modelling 141
8.5.2 Alternative Agent Reasoning Approaches 142

Bibliography 145

Samenvatting 163

Abstract 165

ix

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 10PDF page: 10PDF page: 10PDF page: 10

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 11PDF page: 11PDF page: 11PDF page: 11

Acknowledgments

The work on this thesis started more than four years ago. Coming from a technical
study and work background it was both a daunting challenge and an amazing
journey to be a part of the academic community, following research questions I
found important and interesting that sometimes seemed like endless roads.

Therefore, I would like to firstly thank Prof. Tom van Engers for accepting
me as a PhD candidate and supervising me through my research, and having an
indelible effect on my way of thinking that far exceeds this dissertation. I would
also like to thank Giovanni Sileno, for the numerous compelling interactions and
conversations many of which echo through every chapter of this dissertation.

I also should thank members of our research group(s) who were endlessly kind
and welcoming towards me from the day I started. A special thanks to Prof. Cees
de Laat that in my mind is the definition of a motivating and supportive leader,
Thomas van Binsbergen that always had an interesting future research idea to
share, and Ana Oprescu that seemed to have an answer to every problem.

Finally, words can not express my gratitude towards my ever-supportive part-
ner and companion Shabnam, without whom this thesis, and most other good
things in my life could never be possible. To my little Rasa, as you begin your
own educational adventure, remember that your love and presence have always
been my greatest motivation and source of strength. I eagerly look forward to
witnessing your journey and achievements, wherever they may be.

Amsterdam Mostafa Mohajeri Parizi
September 2023

xi

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 12PDF page: 12PDF page: 12PDF page: 12

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 13PDF page: 13PDF page: 13PDF page: 13

Chapter 1

Introduction

Systems running on cyber-infrastructures are getting more integrated in all activi-
ties of our daily life and have increasingly more impact on society. Consequently,
there is a growing need for approaches making sure that these systems are operat-
ing in a way that is more in alignment with societal norms (eg. as expressed by
policies, rules, regulations). From an engineering point of view, this means that
norms and policies should be considered as part of infrastructure development
and maintenance cycles by designers. On the other hand, because infrastructures
affect society, by extension, they also affect how society is governed, so they should
be taken into account when policymakers and governance bodies are analyzing
existing norms or implementing new policies and services.

Taking modelling and model-execution as principal instruments to analysing a
system, intuitively, requires experts to be able to create executable models of all
these elements: of the infrastructure, of relevant norms, and of the social setting,
including its actors. The expressivity and flexibility required to encompass these
aspects are not trivial. It is no longer just a model of an infrastructure, of a social
setting, and of a set of norms, but, it is an infrastructure that is utilized by social
actors and governed by norms; a social setting that utilizes and monitors the
infrastructure, and decides upon, modifies, analyzes and enforces the norms; and
norms that regulate the infrastructure and the social setting, and have impacts
on both.

The purpose of this thesis is to closely study the interactions between these
concepts, and search for fundamental gaps in current methodologies utilized by
system designers, policymakers, and governance bodies. The thesis elaborates on
approaches for creating more expressive and tangible models, also flexible enough
for specifying different scenarios and use-cases in different domains. To propose
realistic methods, aside from the theoretical analysis, proof-of-concept tools have
also been developed or adopted at each step and will be presented with the thesis.

1

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 14PDF page: 14PDF page: 14PDF page: 14

2 Chapter 1. Introduction

Social Norms and Behavioral Patterns The definition of norms for specific
use cases and domains is specified in corresponding chapters, but, it is valuable
to set the tone on the complexities of this concept. The social life of a human
is filled with objectively complex interactions, but somehow we as humans can
navigate these dynamic and nondeterministic interactions with a sufficiently low
allocation of processing resources. A concept that aids us in doing so is norms, by
defining what should and should not be the case and what is expected to happen
or not to happen in certain contexts and under certain conditions, norms drive,
or a least suggest, which actions to engage with in a complex world.

The fascinating thing about norms is that in any given situation, all parties
involved are (somewhat) internally aware of the processes involved in that situ-
ation and they can act accordingly. We can even deduce these (most probably)
correct processes in face of highly dynamic and nondeterministic situations with a
multitude of variables. It seems like somehow we have converged very closely to a
set of abstract, parameterized, context-based, and flexible scenario templates for
interactions defined by norms that we use regularly as a coordination mechanism
in society.

These scenario templates have placeholders for different roles each with its
own script, and most of the time we can (almost) precisely interpret a situation,
select a relevant and applicable template and instantly fill the parameters and
role placeholders with qualified values and infer some sort of decision tree that
tells us how interactions can and should move forward. We even monitor and
observe events and (own or others’) actions and qualify them as traversal steps in
these scenarios. Furthermore, concerning our part in a scenario, we seem to have
internalized behavioral specifications or partial plans that allow us to enact and
embody the role that we have filled with ourselves.

Interpreting the context, selecting a relevant and applicable scenario template,
filling in the variables, and qualifying observation are the main components of
utilizing scenario templates defined by norms.

Let us take a simplistic example that is later on used in this thesis: a sale
transaction. Regardless of the specific contexts, the norms for a typical sale
transaction specify (almost globally accepted) predefined roles (buyer/seller),
variables (item/price) and actions (offer/accept/pay/deliver) related to it.

For an example of interpreting the context and selecting an applicable scenario,
take for instance in-person shopping versus online shopping; while there are obvious
differences in the variables and actions involved, we can think of them as the same
thing: a sale transaction, with the same abstract template. For an example of
filling in the variables, we can easily qualify actors and put them in proper roles:
the role of the seller in a sale transaction can be filled with ourselves, another
person, a company, or more pertinently for a cyber-infrastructure context, even
an automated software in the form of a webshop.

The same level of abstraction also applies to qualifying observations and
expectations: receiving cash from an in-person buyer can be qualified as the

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 15PDF page: 15PDF page: 15PDF page: 15

3

same action as a notification of a transfer from a banking infrastructure, and the
expectation of receiving an item in the next few moments from an in-person seller
is the same as the expectations of receiving an oversea delivery in the next few
weeks.

In general, scenario templates defined by norms are highly dynamic and flexible.
During an interaction, we are constantly monitoring the scenario for deviations
from what we expect to occur. Some deviations can be negligible: while somewhat
unexpected, they do not change the context of the interaction completely, like
not receiving a delivery precisely when it was supposed to arrive. However, some
deviations completely change the context, like never receiving an item you paid
for and not being able to contact the seller.

What is interesting about deviations is that we even have modular and pre-
defined contingency plans for when a concrete scenario is not played according
to the expectations of its template. These plans can vary from attempting to
fix the concrete scenario, like waiting a bit longer than expected for delivery, to
revising some beliefs that resulted in the unexpected situation like removing a
particular actor from the qualifications that make them suitable for the seller role
to even rewriting the qualification or behavioral rules altogether like never buying
anything from any unrecognized webshops.

Regulations, Compliance, and Governance Regulations are a form of norms
that are (partially) concretized, written as a normative text, and enforced by some
authoritative body. Cyber-infrastructural systems that affect members of a society
ideally should be fully compliant with the norms and regulations of that society.
There are multiple ways to ensure compliance in a system, depending on its size
and complexity, the norms that govern it, and the governing bodies that are
concerned with monitoring and regulating it. Some policies can be operationalized
in terms of access control.

For example, some infrastructures with pre-defined and static internal policies
can be developed by hard-coding these policies in their operations. Intuitively,
this is the most efficient approach, but also the least scalable and maintainable.
Some systems use run-time policy-making protocols like LDAP to make sure the
infrastructure is running in a compliant manner by e.g., taking permission from
policy enforcement points that take advice from policy decision points which
in turn retrieve policies from policy information points. Then, by modifying
the policies in the policy information points, the administrators can control the
enforced policies without changing the infrastructure itself.

These approaches can be referred to as compliant by design, and are arguably
suitable for many situations. That is, until the point that norms in question become
more complicated than simple (eg. non-conflicting, non-contradicting, easy-to-
interpret) regulative norms defined in terms of deontic notions of permissions,
obligations, and prohibitions, implemented in the form of ex-ante access rules. As

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 16PDF page: 16PDF page: 16PDF page: 16

4 Chapter 1. Introduction

is observed in the literature –and illustrated with multiple examples in this thesis
– norms become more complex much sooner than anticipated by most studies, and
in fact, are vastly simplified in current compliance-checking approaches.

Norms are more than a set of formal rules extracted from a legislative text:
they emerge from multiple sources with different strength, and they require
interpretation to be encoded, and qualification to be applied within a social context.
Furthermore, they continuously adapt, in both expression and application [18].
Additionally, in any given context multiple normative sources may be concurrently
relevant, and/or multiple interpretations of the same normative sources may be
available (e.g. retrieved from previous cases), and these may be possibly conflicting.
Finally, not all regulations are norms about controlling actions ex-ante , i.e., prior
to the performance of the action; instead, they may be rules about what ought to
be ex-post, ie. if certain actions have been performed already.

Furthermore, norms are traditionally distinguished between regulative and
constitutive norms [144, 21, 149]. Regulative norms regulate behaviors that exist
independent of the norms and are generally prescribed in terms of permissions, obli-
gations and, prohibitions (e.g. traffic regulations). Constitutive norms determine
that some entity (e.g. an object, a situation, a certain agent, a certain behaviour)
“counts as” something else, creating a new institutional entity that does not exist
independently of these norms. (For example, the concept of marriage, or money
as a legal means of payment). Constitutive norms are particularly relevant for
qualification acts. The concept of institutional power is also particularly relevant
in the context of constitutive norms, as it is used to ascribe institutional meaning
to performances (e.g. raising a hand counts as a bid during an auction).

The intrinsic complexities of dealing with norms, alongside the fact that cyber-
infrastructural systems also include human actors and institutions that may be
not fully compliant (and arguably, not even benevolent), entails that such systems
can not be fully compliant by design. Instead, such systems require governance,
which includes creation of new policies and regulations or modifying existing ones,
promoting policy goals, providing supportive services, monitoring, analysing and
imposing punishments and sanctions where needed. Intuitively, if components
of the system can be feasibly compliant by design, that is a desirable attribute.
However, when the governed system has rapidly changing technological components
in it, there will be a need for approaches in adaptation of the governance that can
keep up with these changes, and this thesis argues that modelling is a feasible
approach.

Models of Agency Software systems are generally considered to be void
of real agency (specifically in legal terms) and are controlled through specific
control structures. Even if those structures consist of probabilistic flows that
can change as the system interacts with its environment (like in the case of
policies issued by reinforcement learning) they still have a control structure. This

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 17PDF page: 17PDF page: 17PDF page: 17

5

assumption becomes fuzzy when it comes to computational models of social actors.
These models need in principle to take agency into account: they are executable
models that should represent humans or organizations, yet, without access to fully
developed artificial general intelligence, it is hard to claim that a software agent
has agency.

Then, the question is: how do we model such actors? There are two main
approaches used in the field to model agency: (1) modelling agents in terms of
variables and mathematical functions, and, (2) modelling agents with means of
agent-oriented programs, often in the form of logic-based, rational behavioral
specifications, that often are deployed in a Multi-Agent System (MAS).

The first approach has many advantages. Firstly, mathematical models are
often more efficient in execution, resulting in them being more scalable. Also,
defining agents in terms of a few variables makes them easier for experimentation,
particularly in simulations. Finally, it also makes them much easier to manipulate
at run-time, to simulate adaptation and learning processes.

In general, when the purpose of a research is to study the outcome of social
phenomena in certain settings without regards to the model of the input agent,
mathematical models are suitable. Example of application of these approaches
is a simulation of disaster response and relief, where the purpose of the study
is to find the optimal settings or infrastructures to minimize damage. In these
cases, the agents —social or infrastructural— are generally considered to have
mathematical specifications that encompass a statistically realistic representation
of how a civilian, a disaster response team, or an infrastructure will or should
act in case of an incident or natural disaster as their utility function [4, 107, 37],
keeping higher level concepts like purpose or intentions implicit in the models.

Instead, where mathematical models fall short and programmable models are
advantageous is in studies where expressivity and transparency of the models are
paramount. In these cases, even if the execution is less efficient and adaptability
is harder to achieve, it is still worth to have self-explanatory and readable models
of agents that have explicit notions of agency (such as intentions), and act in a
configurable (potentially highly heterogeneous) social setting. These are the cases
where the purpose of the study is to analyze the agents and the society of agents
without much regard to optimizing an outcome, and often there is no obvious and
well-defined utility function to optimize anyway.

This research intrinsically falls into the second category category, and, as it
will be presented in later chapters, it will build upon the Belief-Desire-Intention
(BDI) model of agency [140] to model agents. By specifying agents in terms
of human-related attitudes, BDI agents are suitable in modelling social agents
(computational or not). Interestingly, the majority of the concepts defined in the
previous section about norms, like the presence of behavioral specifications that
can be matched and concretized in certain situations, or having contingency plans
for failures are all already (partially) identified by BDI models, to various degrees
of success.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 18PDF page: 18PDF page: 18PDF page: 18

6 Chapter 1. Introduction

1.1 Motivation and Research Questions

The overarching motivation of this research lies in the creation of a digital data
market-places (DMP), with a special concern to the field of logistics data. The
need for data is exponentially increasing in all research and industries, and an
environment like a DMP can provide different parties a place to share (or buy
and sell) scientific or corporate data with each other. Although the presence of
such environment can vastly improve the efficiency of data-oriented research and
even prevent issues like data monopolies, there are certain risks involved, such as
privacy issues, security issues, competitive corporate advantages, legal and ethical
challenges, and governance and accountability concerns.

Furthermore, as more governments (and other authoritative bodies) are imple-
menting regulations to govern data transactions, such sharing environment needs
to be compliant with these regulations. Additionally, actors in these markets
(organizations, companies, individuals) may have ad-hoc contractual agreements
about data-sharing, and they may also have internal policies (e.g. user agreements
about how they can share data). The complexities of the market-places along-
side the requirement for compliance results in a need for appropriate governance
instruments, only at cyber-infrastructure level.

A crucial part of governance are policies. They provide a framework for
decision-making, establishing guidelines and rules, and guiding the actions of
individuals and organizations. Policies are generally about setting directions
and goals for a system, regulating behavior, managing resources and risks, and,
promote accountability.

In the domain of data-sharing, policies have more specific roles. From the
perspective of privacy, policies may specify how personal and sensitive data should
be handled, defining the conditions for data anonymization and de-identification.
Policies can also ensure compliance with relevant laws and regulations related
to data protection, intellectual property, consent, and confidentiality. They may
define appropriate criteria for data access, such as applicable intentions for a
certain use of data, and performance of appropriate actions, like obtaining consent.

In principle, policies can promote fair and equitable data sharing, and establish
rules for data usage, reuse, and retention [130]. They address ethical considera-
tions such as fairness, transparency, and accountability in data-sharing practices.
Policies may also be about data security, they establish measures to protect data
from unauthorized access, breaches, and cyber threats. They outline security
protocols, encryption standards, access controls, sufficient monitoring and data
breach notification procedures.

Another important aspect of policies and policy-making involves engaging
relevant stakeholders, including individuals, industry representatives, researchers,
and policymakers, to gather input, address concerns, and ensure that diverse
perspectives are considered in shaping the data-sharing policies.

The importance of policies in data-sharing intuitively results in the crucial role

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 19PDF page: 19PDF page: 19PDF page: 19

1.1. Motivation and Research Questions 7

of policy-making. In data-sharing, policy-making generally refers to the process of
developing and implementing rules, guidelines, and frameworks that govern the
collection, storage, access, use, and sharing of data and many other aspects of
data-sharing. It involves the creation of policies, regulations, and standards that
define the rights, duties and responsibilities, permissions, obligations, and power
relations of various stakeholders involved in data-sharing, such as individuals,
organizations, and governments. This leads to the overarching goal behind this
dissertation and other research efforts: Defining approaches, methodologies and
tools for policy-making in the data-sharing domain.

In general, policy-makers are required to take into account the effect and impact
of their policies. For long-term and complex policy matters, it has been argued
that this is only feasible with mathematical or computer-based models [28]. Mod-
elling can play a crucial role in policy-making by providing insights, predictions,
and evaluations that inform the development, implementation, and assessment of
policies. Modelling helps with understanding complex systems allowing policy-
makers to gain a better understanding of systems and their dynamics. Modelling
enables scenario analysis by simulating different scenarios and predict the potential
outcomes of policy choices resulting in more optimized policies with more balanced
between goals. Finally, models can facilitate more transparency and better policy
communication with stakeholders and even system designers.

There are different types of modelling used in the different communities to
assist in policy-making. These approaches vastly differ in their focus, methodology,
and, modelling time-frame. From macroeconomics to system dynamics to agent-
based modelling, each approach has its own use cases in specific domains, and
there are arguments to use one or a combination of these approaches in different
use cases [143, 136, 71, 67]. Agent-based models are suitable for policy-making as
they define the behavior of individuals to build emergent trajectories of the system
as a whole. In a real system, where policies are based on top-down assumptions of
behavior, many changes occur bottom-up from individual actors’ actions [67]. This
dissertation focuses on utilizing agent-based models for policy-making; then, the
more concrete goal of this research would be: Defining approaches, methodologies
and tools for policy-making in the data-sharing domain based on Agent-Based
Modelling.

While this dissertation focuses on data-sharing, it is not only data-sharing use-
cases that are in need of such methods for policy-making and system design. More
aspects of our life are being controlled by automated processes; visa applications,
job applications, credit placements, mortgage and insurance are just a few examples
and one can only imagine that the list will continue to grow as time goes on.
Even if data-sharing regulations are a relatively new phenomena, when taken in
a broader sense, there are already regulations implemented for other domains
that are now becoming more automated, and when the decisions are made in
an automated manner, then the goal will expand to defining policies for any
cyber-infrastructural system with respect to arbitrary (regulative and constitutive)

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 20PDF page: 20PDF page: 20PDF page: 20

8 Chapter 1. Introduction

norms. This dissertation takes the aforementioned goals, by assuming (agent-
based) modelling and model execution as a principal step in system design and
policy-making:

Main Research Question: How can we model a norm-governed
cyber-infrastructure for the purpose of policy-making?

1.2 Approach and Scope of Dissertation

The first step in defining the scope of this work is to break the main research
question structurally by further defining what needs to be modelled: a norm-
governed cyber-infrastructural system. The main components are norms, social
setting, and software/infrastructure that create the system as a whole. We also
need to define what are the requirements of these models to be suitable for policy-
making. Then, the main research sub-questions should intuitively become how to
model each of these three components. But, unfortunately it is not that simple as
these concepts are not at the same level of abstraction for the purposes of this
research.

Take the concept of norms, while modelling them is essential for the whole
picture, it is still social agents that act as the governance bodies that regulate other
entities of the system, and in effect, it is social agents that are being governed,
i.e., it is very hard to talk about norm-related concepts (e.g. sanction) without
referring to human-related concepts (e.g. intention). Indeed, it is rare to see
an infrastructure being punished for non-compliant actions without referring to
a social agent (a person, company, institution, organization) as the main liable
entity for those actions, or, it would be untenable to say a piece of software
or infrastructure is imposing a sanction without the presence of a social agent
(an organization, consortium, government) holding the power to impose that
punishment. In effect, norms as they are studied in this research —as it is often
the case in real life— do not have isolated meaning by themselves and without the
social setting. The same logic goes for software and infrastructural components,
while being another important part of the system model, it is still their usage by,
and their effects on social agents that is being scrutinized.

In summary, in the context of this dissertation, social agents are the glue
that hold the models together and gain therefore a primary role. The following
requirements can be identified with respect to policy-making:

1. Effective social simulation that is suitable for policy makers requires mod-
elling the individual decision-making process given subjective social norms,
individual preferences, and policies; in other words, we require highly ex-
pressive agents in terms of cognitive capabilities.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 21PDF page: 21PDF page: 21PDF page: 21

1.2. Approach and Scope of Dissertation 9

2. The agent models should have high scalability; this is important in this
context to grant the model designers the freedom to create models with a
high number of agents and interactions.

3. The framework should be modular. Modularity is crucial because there are
many different theories in the literature about norms, preferences, personal
policies, and other aspects of the agents. A highly modular agent architecture
allows us to experiment with these theories without the need to hard-code
them into the reasoning cycle of the agent.

This gets us to the first research question:

Research Question 1: How can we create expressive, scalable and
modular models of social agents?

The Belief-Desire-Intention (BDI) model of agency has been identified in the
literature as a suitable approach to create software agents with the ability to
reason about norms [68, 60], to have and apply preferences [162], and that can be
utilized effectively in policy-making [67]. While the reasons behind this choice will
be thoroughly explored through this work, the approach adopted to agent-based
programming in this thesis will be to rely on the BDI model to create the social
agents. Although there are multiple BDI frameworks introduced in the literature,
after much deliberation and testing, presented in Chapter 2, it turned out they
did not meet the requirements of scalabilty, modularity, and, interoperability.

Alongside with this thesis, a BDI (and MAS) framework called AgentScript
Cross-Compiler (ASC2) was designed and developed, mainly with the scalability
and modularity requirements in mind. ASC2 relies on a programming language
based on the AgentSpeak(L) but does not assume a hard-coded reasoning and
decision-making cycle for agents; in fact, almost every aspect of the agents is
programmable.

Firstly, ASC2 utilizes actor-oriented programming via the Akka actor frame-
work: each agent consists of multiple actors, each with their own role, able to
communicate through internal messaging, effectively making an agent a modular
actor micro-system in itself. Secondly, the design of ASC2 follows software engi-
neering best practices and methodologies like Dependency Injection and Inversion
of Control. By using Dependency Injection, most components and sub-components
of an agent can be sent to it [NOT CLEAR!] as potentially customized depen-
dencies. Furthermore, with Inversion of Control, it is the lower level components
that are mainly controlling the nuanced [NOT CLEAR] execution cycle when
higher level components only define abstract control flows. These design decisions
also result in scalability of the framework: the ASC2 framework is introduced,
analysed, and, benchmarked from an engineering perspective in Chapter 2.

Next, there is the issue of how to model software and infrastructural entities.
Software and infrastructure components are one of the main components of our

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 22PDF page: 22PDF page: 22PDF page: 22

10 Chapter 1. Introduction

models, and being able to include them is essential. However, the question of how
to model the software components falls out of the scope of this thesis as there
is an extensive body of research on software modelling. Instead, the focus here
is on integrating software components with the software agents. Steps are taken
to provide a high level of interoperability for social agents modelled in ASC2 to
virtually any type of model of software and infrastructural entities that are being
used by the designer and policy-maker, including the actual real entities.

Research Question 2: How can social agents utilize software and
infrastructural models or entities?

One of the bigger drawback of existing BDI frameworks that was identified
during this research, which was also a motivation in creating ASC2, is the lack
of straightforward ways the have agents interacting with arbitrary environments.
Here, environment means an arbitrary piece of software external to the agent.
This can be a communication interface, an execution environment, or any other
type of software component. In the data-sharing context, for example, this
environment is the data-sharing infrastructure — or a model of it– that the agents
need to communicate with through some arbitrary API. Interestingly, this is
hardly recognized in the classic MAS literature as a challenge or requirement,
and therefore, the lack of it as a drawback. However, by reviewing more recent
literature we can observe that there are multiple works [138, 46, 121] that try
to interface existing BDI frameworks with modern software components and
architectures like web services or micro-services.

ASC2’s design however gives the agents the advantage of simple interoperability
with the external environment. As it is addressed in Chapters 4 and 5, after
compilation ASC2 agents are technically JVM programs, meaning they are indeed
interoperable with any system that (for example) a Java program can utilize or
communicate with. This results in much more effective modelling cycles, as there
is far less concern about connecting the models to a real system or interfaces.

Next is the notion of norms, modelling them including social norms, regulations,
contractual agreements, internal policies is an important part of the modelling
that this thesis aims at. However, while different approaches and ideas about
modelling norms are explored in this work, defining any novel approach to do so
falls out of the scope of this thesis for both theoretical and practical reasons. The
practical reason is mainly that other threads of dedicated research were being
performed on this matter within the research group that both affected and utilized
this work. The theoretical reason is that there are various levels of abstraction
that norms can be modelled for different use-cases and this work stays agnostic to
which approach is the most suitable. However, the question that is studied is the
concept of norms from the perspective of social agents:

Research Question 3: How can social agents reason with, and, about
norms?

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 23PDF page: 23PDF page: 23PDF page: 23

1.2. Approach and Scope of Dissertation 11

There are multiple works in the literature about the interaction of agents
with norms [68, 33, 156, 49]. The main concern of this dissertation on this
question is to identify the interactions between social agents and norms, including
the interpretation and qualification of events between institutional and physical
realities, understanding compliant and non-compliant behaviors and the relation
between compliance and autonomy. This is addressed in chapter 5 with introducing
the concept of normative advisors, a flexible approach that can be utilized by
social agents to have an understanding of normative positions in their environment
without reducing their autonomy.

Modelling agents for the purpose of policy-making requires to reproduce to
a certain extent decision-making constructs similar to those observed in human
institutions. Furthermore, for traceability and explainability reasons, decision-
making that precedes actions is as relevant as the behavior. Although BDI models
— and more specific to this work, AgentSpeak(L)-like models— are designed with
traceability and explainability as a first-class requirements [139], when it comes to
more complex forms of decision-making – like the issues that manifest in conflict
resolution– the question of modelling objectives, desires, and preferences of agents
are not trivial issues [68, 162, 123].

In the process of this research, it was observed that by adding norms and
normative reasoning into the agents, these concepts become even more important.
Norms in every form can be conflicting, and such conflicts can rarely be resolved
by typical approaches [19, 176]. Furthermore, norms can also be conflicting with
the goals that an agent is trying to achieve [34], how should an agent program
behave in face of conflicts? On what basis should it make decisions in such
situations? There is no clear-cut answer to these questions, as it will depend on
the context. This dissertation addresses this by taking the stance that it depends
on the preferences and desires of the agent. It is the agent that should decide
based on the context how to resolve a conflict, and the designer should be able to
program such notions. The issue addressed here is not about what is the most
appropriate behavior of the agent as the consequence of its decision-making and
conflict resolution; that will depend on what the designer is modelling. Instead, it
is how such decision-making can be expressed in a traceable manner:

Research Question 4: How can we make the agents’ decision-making
traceable and explainable?

This question is addressed in Chapter 3 by adding explicit preferences in the
form of CP-Nets into the BDI model and the AgentScript programming language.
With this approach, the designer can separate the concern between the procedural
or the how-to knowledge of the agent program from the preferential or what-to
knowledge. This makes the decision-making of the agents more transparent, which
is a requirement in models that are created for the purpose of policy analysis.

The last issue addressed in this thesis is the practicality of utilizing agent-based
models as part of real-world system design and policy-making, not only as they are

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 24PDF page: 24PDF page: 24PDF page: 24

12 Chapter 1. Introduction

used in this work but the whole agent-based modelling community. It is always
the case that accessibility and usability of the tools in a certain methodology is an
important part of their adoption, it is hard and mostly not feasible to convince
domain experts like programmers to utilize an approach if they need to also
learn a whole new set of tools and ecosystems. This is also the case for utilizing
agent-based models and has been a major concern in this work

Research Question 5: How to make agent-based modelling a usable
approach for mainstream designers?

In recent years, the tools created for design and development in mainstream
software community are becoming more advanced and efficient. A few examples
of such tools are IDEs, testing libraries, build tools, code coverage tools, code
repositories, and DevOps system like Continuous Integration and Deployment
(CI/CD) tools. Intuitively, it is advantageous to allow for utilization of these
tools in agent-based modelling and model execution. As a side effect of its design,
ASC2 programs can directly utilize any system or library available to any other
software programs without the need for any additional piece of software, because,
after compilation, ASC2 programs become standard JVM-based programs. This
includes all the development tools listed above, and many others. In Chapter 4 it
is shown how utilizing these tools, not only benefits agent and multi-agent system
(MAS) communities in e.g., testing their designs with mainstream automated
testing tools, but more importantly, allows agent models to be used as part of any
software development process, be it for testing or any other purpose.

1.3 Research Context and Collaborations

Before starting the next chapter, I will try to put this dissertation into the context
and environment that the research was conducted, highlighting the parallel research
that had a connection to it and some of the events that affected it. The research
was done in the Complex Cyber-Infrastructures (CCI)1 research group and was
funded by the project Data Logistics for Logistics Data (DL4LD)2. There were
two other closely related projects: Secure Scalable Policy-enforced Distributed
Data Processing (SSPDDP)3 and Enabling Personalized Interventions (EPI)4

that shared research with DL4LD. The following highlights some of the parallel
research threads that were conducted, mostly by other PhD candidates and
post-doctoral researchers, alongside this work. In the context of this dissertation,
Agent-Oriented Programming approaches were utilized for developing Agent-Based
Models. The counterpart to this are the mathematical models of agents which

1https://cci-research.nl/
2https://dl4ld.nl/
3https://cr-marcstevens.gitlab.io/sspddp/
4https://enablingpersonalizedinterventions.nl/

https://cci-research.nl/
https://dl4ld.nl/
https://cr-marcstevens.gitlab.io/sspddp/
https://enablingpersonalizedinterventions.nl/

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 25PDF page: 25PDF page: 25PDF page: 25

1.4. Structure of the Dissertation 13

were simultaneously studied in the context of the group by Fratrič et. al. [82, 81].
Where this thesis tries to find approaches in enhancing models for developing
policies, there were parallel works that focused on what these policies should be,
including risk management and enforcement schemes by Zhou et. al. [174, 173].
Another thread of research, as it was mentioned in the introduction was about
norm reasoning. The results of these works presented in [158, 157] are used
throughout following chapters. Finally, there was a thread of work mainly on
architectural design of Data Market-Places e.g., [145, 171] that share much of
their requirements with this dissertation.

Finally, the majority of the time dedicated to this research overlapped with
COVID-19 restrictions, and apart from “normal” issues, it meant there was little
to no real interaction with the industry partners that were the initial stakeholders
of this project. To provide full transparency for the reader the phrase “it turned
out that it is not only data-sharing use-cases that are in need of such methods
for policy-making and system design” in the motivation section, while still true,
also partially means that it is considerably more challenging to study policies
and policy-making in data-sharing without the presence of stakeholders that have
access to data and are interested in sharing them. As a result, while this research
was at a relatively high level of abstraction at its inception, for better or worse,
became even more theoretical that it was intended to be —or I intended it to be—,
but fortunately, my supervisors were already interested in the more theoretical side
of the issue [159, 148] which greatly guided this research in every aspect. However,
by interacting with the respective communities e.g., AI and Law, Normative
Systems, and, Multi-Agent Systems, my observation was that there is an interest
for more practical and usable approaches to bring the long-standing results of
these communities closer to mainstream domains. For this reason, every chapter
of this dissertation includes development of tools or proof of concepts that utilize
fairly mainstream software ecosystems.

1.4 Structure of the Dissertation

The dissertation is organized as follows: Chapter 2 Introduces ASC2, an agent
programming framework based on BDI that acts as both the technical and theo-
retical backbone of this research. Chapter 3 proposes an approach for embedding
preferences in form of CP-Nets into ASC2 agents. Chapter 4 discusses methods for
making a BDI modelling framework interoperable with mainstream software tools
with an emphasis on testing. Chapter 5 focuses on adding norms into agent-based
and multi-agent models, introducing the concept of normative advisors. Chapter 6
is an illustrative example of using the modelling framework, focusing on coordi-
nation in MAS via norms. Chapter 7 is yet another illustrative example which
discusses mixing qualitative, quantitative, and, normative reasoning in the models.
Finally, Chapter 8 offers the summary, conclusion, limitations, and, future works.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 26PDF page: 26PDF page: 26PDF page: 26

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 27PDF page: 27PDF page: 27PDF page: 27

Chapter 2

Developing a Scalable MAS Framework

Agent-based modelling is a valuable tool in designing complex socio-technical sys-
tems. This chapter introduces an Agent-Oriented Programming (AOP) framework
based on the Belief-Desire-Intention (BDI) model of agency called AgentScript
Cross-Compiler (ASC2). There are multiple BDI frameworks already introduced
in the literature. Prior to the development of ASC2, we tried to adapt and utilize
several other frameworks. While there were different advantages and disadvan-
tages to each of them, in the end, the main reason that resulted in designing and
developing yet another framework was scalability, mainly in terms of development
process which includes interoperability and maintainability of agent programs.
None of the other frameworks allowed for seamless and effective interoperability
between agents and other mainstream software and development tools. Also, most
BDI frameworks have most of the agent’s reasoning hard-coded into them, which
limits experimentation on alternate theories.1

2.1 Introduction

Agent-based models have an intuitive mapping to behavioral descriptions, and for
this reason, are extensively used for modeling and simulations of social systems.
However, agent-based programming is not only relevant for simulation. Complex
Cyber-Infrastructures like those used for data-sharing as digital marketplaces
exhibit the double status of computational and social systems; regulating these
infrastructures requires reproducing to a certain extent constructs similar to those
observed in human reasoning (e.g. For which purpose is the agent asking access
to the resource? On which basis is the infrastructure granting access?). For
traceability and explainability reasons, decisions concerning actions need to be
processed by the infrastructure as much as relevant operational aspects. Agent-
based programming, by looking at computational agents as intentional agents,

1The material presented in this chapter refines and extends elements presented in [126].

15

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 28PDF page: 28PDF page: 28PDF page: 28

16 Chapter 2. Developing a Scalable MAS Framework

provides this level of abstraction available by design. However, this raises concerns
about how we can efficiently map logic-oriented agent-based programs into an
operational setting, a problem motivating the present research.

This chapter introduces ASC2, a logic-based AOP framework in which agents
are modular micro-systems run by actors. By getting inspiration from the design
of previous works, the novelty of this framework is (a) ASC2 is a cross-compiler
and (b) it relies on the Actor model, instantiating each intentional agent as an
autonomous micro-system run by actors. The hypothesis behind this choice is that
defining the agents via actors results in a more fine-grained modular architecture
that is more effectively modifiable, and that the execution of agent-oriented
programs is enhanced (in scalability as well as in performance) by relying on
robust implementations of Actor models such as Akka. The goal of this chapter
is to (1) introduce ASC2 and its DSL as they will be a basis for the rest of this
thesis (2) illustrate the novelty of the the ASC2’s structural architecture and
inner workings, and (3) provide a comprehensive qualitative and quantitative
comparison between ASC2 and other similar frameworks.

To evaluate the feasibility of this approach for future developments, the first
implementation of ASC2 based on Akka running on JVM is compared with three
other relevant AOP frameworks (Jason [26], ASTRA [65] and Sarl [65]) by means of
3 benchmarks (token ring, chameneos redux and service point), known to capture
relevant patterns in concurrent applications. This performance evaluation shows
that despite its relative youth and the new implementation approach, ASC2 is
competitive against existing frameworks, making it worthy of further investigation.

The chapter proceeds as follows: Section 2.2 provides some background on
relevant concepts and related works. Section 2.3 presents the ASC2 framework.
Section 2.4 reports on the empirical experiments comparing ASC2 with other
frameworks. Section 2.5 compares the frameworks qualitatively. A note of future
developments ends the chapter.

2.2 Background

2.2.1 Agent Oriented Programming

Agent-Oriented Programming (AOP) is a programming paradigm that uses mental
attitudes to model autonomous computational agents. Introduced in 1993 by
Shoham [147], it has attracted increasing attention ever since and is believed to
provide an effective abstraction to approach complex software systems (e.g. [141]).
In the beginning, it was presented as a specific version of Object Oriented Program-
ming (OOP): whereas object classes contain arbitrary components, agent types
share the same types of mental states and of structural relationships/mechanisms
involving those states.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 29PDF page: 29PDF page: 29PDF page: 29

2.2. Background 17

2.2.2 Belief-Desire-Intention (BDI) Model

BDI frameworks are usually described in terms of an agent theory and an agent
computational architecture [78]. The agent theory usually refers to Bratman’s
theory of practical reasoning [31], describing the agent’s cognitive state and
reasoning process in terms of its beliefs, desires and intentions. Beliefs are the
facts that the agents believe to be true in the environment. Desires capture the
motivational dimension of the agent, typically in the more concrete form of goals,
representing procedure/states that the agent wants to perform/achieve. Intentions
are selected conducts (or plans) that the agent commits to (in order to advance
its desires).

The agent architecture varies depending on the platform. Taking for instance
the BDI platform Jason [26] as the biggest inspiration for ASC2, it consists of
perception and actuation modules, a belief base, intention stacks, and an event
queue. The BDI execution model in Jason, describing the agent’s reasoning cycle,
can be summarized as follows:

1. observe the external world to update the internal state (perception);
2. update the event queue with percepts and exogenous events;
3. select events from the event queue to commit to;
4. select plans from the plan library that are relevant to the selected event;
5. select an intended means amongst the applicable plans for instantiation;
6. push the intended means to an existing or a new intention stack;
7. select an intention stack and pull an intention, execute the next step of it;
8. if the step is about a primitive action, perform it, if about a sub-goal post it

to the event queue.

As exemplified by this description, an essential feature of BDI architectures [140] is
the ability to instantiate plans that can: (a) react to specific situations, and (b) be
invoked based on their purpose. Consequently, the BDI execution model naturally
relies on a reactive model of computation (cf. event-based programming, typically
used for user interfaces). Multiple programming languages and frameworks have
been introduced based on the BDI model, as AgentSpeak(L)/Jason [139, 26],
3APL/2APL [54], GOAL [99] and IMPACT [69].

2.2.3 Actor Model

The Actor model, introduced in [98], is a mathematical theory that treats actors
as the primitives of computation [97]. Actors are essentially reactive concurrent
entities. When an actor receives a message it can:

• send messages to other actors;
• spawn new actors;
• modify its reactive behavior for the next message it receives;

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 30PDF page: 30PDF page: 30PDF page: 30

18 Chapter 2. Developing a Scalable MAS Framework

Originally proposed as a tool for the theoretical understanding of concurrency,
the Actor model serves now as the basis of several production-level solutions
for distributed and asynchronous systems, and for reactive programming. These
solutions include: Akka [91], a library developed for the JVM environment,
enriched by a strong community with multiple complementary tools for distributed
environments and stream processing; the C++ Actor Framework (CAF) [40], a
library for creating concurrent programs in C++; Pony [42, 43], an actor language
for building robust parallel systems by providing data-race-free isolation for actors.
A comprehensive overview and benchmark of these works can be found in [17].

2.2.4 Related Work

Multiple AOP and BDI frameworks have been introduced proposing diverse
approaches towards language, execution model, reasoning process, etc. Jason
[26] is plausibly the most known (e.g. it is the most used choice in the Multi-
Agent Programming Contest [55]), and has been constantly developed in the
last 15 years. It is implemented in Java and is essentially an interpreter for a
logic-based DSL, namely an extended version of AgentSpeak(L) [139]. Two recent
frameworks inspired by Jason are Pyson [3] and LightJason [6]. Pyson is an
interpreter implemented in Python and uses MapReduce technology as execution
infrastructure in order to achieve better scalability specifically w.r.t. the number of
agents. LightJason is a BDI framework based upon a variation of AgentSpeak(L)
and whose interpreter aims to improve the scalability of Jason by implementing a
concurrent platform following best practices in software engineering.

ASTRA [65] is yet another framework inspired by AgentSpeak(L)/Jason and is
also implemented in Java, but, unlike Jason, it is not an interpreter. ASTRA relies
on a compilation approach: through a build pipeline the DSL is first translated to
pure Java code and then the Java code is compiled to byte code for execution. In
contrast, the Sarl [141] framework has not been introduced as a BDI platform, and
then it does not use the same abstractions. Nonetheless, it is an AOP framework
written in Java that also uses compilation, and for these reasons, it is relevant to
the current study.

Although several AOP/BDI frameworks have been introduced in recent years
(all hinting at problems of scalability), there is a small amount of empirical
data available about how they perform in comparison to each other. The most
notable exception is [36], in which multiple actor and agent frameworks (2APL
[54], GOAL [99], Jason and Akka) are benchmarked. Their results showed that
Jason outperformed other BDI frameworks by far and scaled almost on par with
Akka. However, at that time (2013), none of these newer frameworks had been
introduced yet, and Akka had not the support it has today. Strangely enough,
none of these new AOP frameworks has the Actor model at their foundation. The
present chapter aims to investigate part of this gap.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 31PDF page: 31PDF page: 31PDF page: 31

2.3. AgentScript Cross-Compiler (ASC2) 19

2.3 AgentScript Cross-Compiler (ASC2)

This section provides an overview of ASC2, however, as this framework is central
to this thesis, detailed descriptions of different parts related to specific concepts
are presented in the respective sections: Chapter 3 introduces the addition of
preferences to the DSL, Chapter4 explores interoperability between ASC2 and
mainstream software development tools. The ASC2 framework consists of:

1. a logic-based Agent-Oriented Programming DSL;
2. an abstract agent run-time architecture;
3. a translation method that generates executable models from models specified

by the DSL;
4. tools that support the execution of models. We provide here a brief overview

of these components.

2.3.1 ASC2 DSL

ASC2’s DSL has a very close syntax to AgentSpeak(L) language and includes
some of the extensions provided by Jason. The main components of the DSL
are (1) initial beliefs, (2) initial goals, and (3) plan rules. Initial beliefs are a set
of facts and inferential rules that are potentially non-grounded declarative rules,
used to infer beliefs from beliefs. Initial goals designate the first intentions to
which the agent commits. These can be used as a way to initialize an agent in
their environment, and maybe start interacting with other agents.

Plan rules are potentially non-grounded reactive rules in the form e : C ⇒ H
that map different internal or external events e (e.g, goal adoption, belief-update)
to a sequence of executable steps H called the plan body which the agent will
perform in response to the event. Each plan also has a context condition C which
is a boolean expression that represents when that plan is applicable. The high-level
overview of ASC2’s grammar definition is presented in Listing 1. A more detailed
definition is presented alongside the translation method in Section 2.3.3

agent → initial_beliefs initial_goals plans

initial_beliefs → (term '.')*

initial_goals → ('!' atomic_formula '.')*

plans → (plan '.')*

plan → ('@' atomic_formula)*

trigger_event (':' context)

'=>' body_definition '.'

Listing 1: AgentScript’s DSL grammar defenition

An example of an ASC2 DSL that shows part of the script for a domestic robot

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 32PDF page: 32PDF page: 32PDF page: 32

20 Chapter 2. Developing a Scalable MAS Framework

is presented in Listing 2, where lines 2-4 are initial beliefs, line 6 is an inferential
rule, line 9 is an initial goal and lines 12-15 define an example plan.

1 % initial beliefs and inferential rules

2 main(fish). soup(veg). wine(white).

3 restaurant(french).

4 at(home).

5

6 meal(S,M,W) :- soup(S), main(M), wine(W).

7

8 % initial goals

9 !go_order(french,meal(veg,meat,white)).

10

11 % plans

12 % P1

13 +!go_order(Loc,Meal) :

14 restaurant(Loc) && not at(Loc) =>

15 #move_to(Loc);

16 !order(Meal).

17 ...

Listing 2: An example script of ASC2 DSL

2.3.2 ASC2 Run-time Architecture

The run-time architecture of ASC2 agents can and should be inspected from
both functional and structural perspectives. ASC2 is primarily motivated by
AgentSpeak(L)/Jason as a starting point, and in its default setting it is designed
to have (almost) the same functional architecture. However, from a structural
perspective, ASC2 is novel in the sense that it utilizes the actor model to instantiate
agents as actor micro-system. This Section, after a short description of the
functional architecture and simple examples to get the reader acquainted with the
DSL, focuses more on the structural architecture of ASC2. Then, in Chapter 3
where the functional architecture of ASC2 is extended, a formal and more complete
description of reasoning in ASC2 is provided.

ASC2 Functional Architecture

An ASC2 agent consists of a set of beliefs B called belief base, a set of plans P
called plan library, a set of events E, a set of intentions I, and three selection
functions: SE,SO,SI . When the agent receives an (internal or external) event or
adopts a goal, it is added to E. The selection function SE selects an event to
process from E.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 33PDF page: 33PDF page: 33PDF page: 33

2.3. AgentScript Cross-Compiler (ASC2) 21

Figure 2.1: ASC2’s functional architecture

Then, this event is matched with the triggering events in the heads of the
plans in P . The plans that their triggering event unifies with this event are called
relevant plans and their unifier is called the relevant unifier. Then for each relevant
plan, the relevant unifier is applied to the context condition of that plan, and
by querying against B a substitution is created such that the context is a logical
consequence of B. The composition of relevant unifier with this substitution is
called an applicable unifier.

As for each event, there could be multiple applicable unifiers, the selection
function SO chooses one of these plans or options, and applying the applicable
unifier to that plan creates an instantiated plan, i.e, an intended means for the
event which will be added to a new or existing intention. Then the SI function
selects an intention that will be executed. Figure 2.1 presents an overview of the
functional architecture embedded in ASC2 agents.

Example 1 Take the example script in Listing 2, Suppose the agent receives
and event in the form of:

!go_order(french,meal(veg,meat,white))

For this event, plan P1 is relevant with unifier:

{Loc/french, Meal/meal(veg,meat,white)}

Then applying this unifier to the context condition of that plan will result in the
expression:

restaurant(french) && not at(french)

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 34PDF page: 34PDF page: 34PDF page: 34

22 Chapter 2. Developing a Scalable MAS Framework

Which indeed is a logical consequence of the agents beliefs, meaning this plan is
applicable with the same unifier as before (i.e., the query does not add any new
substitutions). Then, by applying this substitution to the plan itself will result in:

+!go_order(french,meal(veg,meat,white)) :

restaurant(french) && not at(french) =>

#move_to(french);

!order(meal(veg,meat,white)).

The steps in the body of the instantiated plan become an intended means for
the agent to execute. The first step #move_to(french) is simply a function call. In
ASC2, this could be any callable entity on the JVM’s execution classpath. In this
example, we are assuming that this call somehow relocates the agent to the location
specified as the parameter. The second step is !order(meal(veg, meat, white))

which is a sub-goal. In functional terms, a sub-goal is processed by the agent as
an internal event that will follow the same plan selection process.

This process is better described in ASC2 as a reasoning flow instead of a
reasoning cycle. This is because unlike what is typically the case in BDI frameworks,
ASC2 does not implement an explicit synchronous reasoning cycle. As a result, the
two selection functions SE and SI are asynchronous: when an event arrives, it will
be processed in an asynchronous manner given there are free resources available
to the agent. Or, when a new intent is created, it will be executed asynchronously
given there are free resources available. In effect, the sets E and I are priority
queues and SE and SI are sorting functions that define the priority of the entities
in these queues. The default implementation for both is a simple first-in-first-out
(FIFO) algorithm. A new event or an intention will be selected by their respective
selection function when processing resources, namely threads from a thread pool
become available.

ASC2 Structural Architecture

The structural architecture of ASC2 agents is based on the Actor model. Each
agent consists of multiple actors with different roles: (i) an Interface actor, (ii)
a Belief Base actor, (iii), an Intention Pool actor and (iv) N ≥ 1 Intention
actors. Each agent has also non-actor components: (1) a plan library, and (2) one
or more belief bases. An overview of this architecture is presented in Figure 2.2.

The plan library of the agent consists of a set of plan rule objects in the
form {e,c,h}, where e is an object that can be matched and unified with event
messages to determine if a plan rule is relevant for that event, c is a term object
that can be sent to the Belief Base actor to determine if the plan is applicable
and h is a function representing the body of the plan.

The belief base(s) of the agent can be in practice any type of storage technology.
To interface an arbitrary belief base into the agent architecture a translation

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 35PDF page: 35PDF page: 35PDF page: 35

2.3. AgentScript Cross-Compiler (ASC2) 23

Figure 2.2: ASC2’s structural architecture

function needs to be implemented for mapping the query messages into the queries
of that belief base and vice versa, translating the responses into result messages.2

Interface Actor

The Interface actor acts as the main entity of the agent. It initializes the Belief
Base and Intention Pool actors and then sends the initial beliefs and inferential
rules to Belief Base actor as assert messages and initial goals to Intention pool
actor as achieve messages. This actor is the only component of the agent that
is accessible from the environment and the other agents: all incoming messages
and events must go though this actor and any message sent from this agent will
indicate the Interface actor as the sender of message. When the Interface actor
receives a new message m, based on the type of the message it will either process
it itself if m is a control messages, (e.g, halt), forward it to Belief Base actor if m
is an assert message (e.g, perception) or forward it to Intention Pool actor if m is
an achieve message (e.g, request).

Belief Base Actor

The Belief Base actor maintains the connection between other components of
the agent and any data storage/reasoning engine that is used as the belief base.
This actor accepts query messages (retract, assert and unify) and responds with
result of the query. The technology of the data storage(s) is abstracted behind

2For the benchmarks presented in this work we used a lightweight open-source Prolog reasoning
engine implemented in Scala called Styla, available at https://github.com/fedesilva/styla.
The library was minimally modified and is available at https://github.com/mostafamohajeri/
styla.

https://github.com/fedesilva/styla
https://github.com/mostafamohajeri/styla
https://github.com/mostafamohajeri/styla

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 36PDF page: 36PDF page: 36PDF page: 36

24 Chapter 2. Developing a Scalable MAS Framework

this actor and it can be changed by the programmer without affecting the rest
of the framework. The specific implementation of the belief base is injected to
the agent initialization time. Apart from processing queries, the Belief Base actor
also feeds back belief-update events to the Interface actor. The semantics of when
these events should be created are externalized to the core of architecture and can
be programmable by the designer. This is the inversion of control as the belief
base can control other components by sending messages to them.

Intention Pool actor

The Intention Pool actor receives events from the Interface actor and processes
them. To process a received event v, the set of relevant plan rules {e,c,h} are
selected from the plan library by matching and unifying v against e. Then these
relevant plans are fetched from the plan library and sent to an idle Intention actor.
The Intention pool actor can spawn N Intention actors, where the configurable
number N dictates the number of concurrent intentions each agent can have
at each instant. This actor uses a prioritized mailbox that sorts the messages
based on the externalized programmable priority function SE and a new event is
processed only if there are idle Intention actors to forward it to. This mechanism
makes sure that as long as there are no resources available, new events stay in
the mailbox to be re-prioritized by SE and when an idle Intention actor becomes
available the event with the highest priority is processed 3.

Intention Actor

An Intention actor is a reusable unit of execution for the agent. It receives an
event v alongside a set of plan rule objects {e,c,h} from the Intention Pool actor
for execution. The execution consists of three phases: (i) the applicability of each
plan rule is checked by sending a query message containing c to the Belief Base
actor; (ii) from the set of applicable plans, one is selected by the externalized
programmable function SP for execution; (iii) the function h of the selected plan
is executed by the Intention actor. After the execution of v is completed either by
success or failure status, a message is sent to the actor which originally requested
v containing the completion status and also a message is sent to Intention Pool
actor signaling that this actor is now idle.

2.3.3 Translation Method

The translation method is designed to compile the models specified with the ASC2
DSL described in 2.3.1 into agents with the architecture described in 2.3.2. The
full effective grammar description of ASC2 is presented in Listing 3.

3In the current implementation, the Intention pool actor exploits the Router feature of Akka.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 37PDF page: 37PDF page: 37PDF page: 37

2.3. AgentScript Cross-Compiler (ASC2) 25

agent → initial_beliefs initial_goals plans

initial_beliefs → (term '.')*

initial_goals → ('!' atomic_formula '.')*

plans → (plan '.')*

plan → ('@' atomic_formula)*

trigger_event (':' context)

'=>' body_definition '.'

trigger_event → ('+'|'-'|'+!'|'-!'|'+?') atomic_formula

context → term

body_definition → body_formula (';' body_formula)*

body_formula → ('!'|'+'|'-') literal

| loop

| conditional

| primitive_call

| <VARIABLE> '=' term

term → <VARIABLE>

| '(' term ')'

| <INTEGER> | <FLOAT> | <STRING> | 'true' | 'false'

| <ATOM> '(' term_list ')'

| term operator term

| 'not' term

| '[' term_list ('|' term)? ']'

| <ATOM>

| primitive_call

atomic_formula → <ATOM>

| <ATOM> '(' term_list ')'

literal → <VARIABLE>

| atomic_formula

term_list → term (',' term)*

operator → '**'|'*'|'/'|'mod'|'+'|'-'|'='

|'=='|'!=='|'!='|'<'|'<='|'>'|'>='|'is'|'>>'

|'^'|'&&'|'||'|':-'

primitive_call → '#' <ATOM> ('.' <ATOM>)* '(' term_list? ')'

loop → 'for' '(' <VARIABLE> 'in' term ')'

'{' body_definition '}'

conditional → 'if' '(' term ')' '{' body_definition '}'

('else' 'if' '(' term ')' '{' body_definition '}')*

('else' '{' body_definition '}')?

Listing 3: AgentScript’s DSL grammar defenition

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 38PDF page: 38PDF page: 38PDF page: 38

26 Chapter 2. Developing a Scalable MAS Framework

For each entity of the DSL, a mapping is defined to generate the code in the
executable underlying language that can instantiate the objects with the desired
semantics at run-time. The translated entities are then fitted in the abstract
architecture to form an executable agent program.

Terms

The ASC2 DSL uses Prolog-style terms. In the translation of an script written
in the DSL, each term (including inferential rules) maps to a Term object which
encapsulates the parsed data (potentially containing nested Terms).

Any term in ASC2 can be translated and analysed in two ways: (1) external
to the script by querying the belief base, and, (2) locally as part of the low-level
code. The first approach makes use of any data-storage engine utilized by the
belief base. This process is by default present in checking the context conditions
of plans, but can also be used at any point in the agent’s script; in our example
the term:

restaurant(Loc) && not at(Loc)

can both be checked against the belief base to check if it can be proven, also a
substitution for the variable Loc will be returned —that is if the belief base uses
a prolog-like reasoning engine. In any case, this type of term utilizes the full
capacity of the belief base which can also be less efficient. The translated Scala
version of this term is illustrated in following, note that this is simply an object
instantiation that can be analysed by the belief base’s reasoning engine:

StructTerm(",",

Seq(StructTerm("restaurant",

Seq(vars("Loc"))),

StructTerm("not",

Seq(StructTerm("at",Seq(vars("Loc")))))))

The second type are terms that can be calculated locally, and for example are
used in control flow structures if/else or variable assignments. As an example, if
in the context of execution of a plan we have a variable Loc that is grounded by
the string value "french", the statement:

Loc + "_restaurant" == "french_restaurant"

can be calculated locally to boolean value true —e.g., in a variable assignment
statement— without the need to query the belief base. Intuitively this second
approach does not utilize the capabilities of the belief base but the local nature
of its translation —it is calculated locally by the underlying language— can be
very efficient. The translated Scala version of the second term is, not that unlike
before this is already an term that can be calculated by JVM without the need
for any extra reasoning4:

4Alongside some implicit type conversions

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 39PDF page: 39PDF page: 39PDF page: 39

2.3. AgentScript Cross-Compiler (ASC2) 27

(vars("Loc") + StringTerm("_restaurant")) ==

StringTerm("french_restaurant"))

Access to the Lower-Level Language As consequence of an approach based
on compilation, the DSL provides direct access to any object or function available
in the agent’s name space —in the Scala implementation, any object or function
which is accessible via the Java class path. These lower-level access statements,
indicated by the token #, are translated literally to the same statement in the
underlying language. This capability provides fast and seamless reuse of libraries
already established for the underlying language. Let us take the previous example,
but this time also use a few of JVM’s basic library methods, namely String.join

and String.toUpperCase:

#String.join("_", Loc, "restaurant").toUpperCase == "FRENCH_RESTAURANT"

which translates to the valid Scala statement:

String.join(StringTerm("_"),

vars("Loc"),

StringTerm("restaurant"))

.toUpperCase ==

StringTerm("FRENCH_RESTAURANT"))

Initial Beliefs/Goals and Inferential Rules

At syntactic level, initial beliefs and inferential rules are logic-style terms, and as
such they translate to an Term object counterpart. Initial goals are a combination
of a prefix (!, designating the adoption of a new goal) and a term and they translate
to a Goal object encapsulating the prefix and a Term object. At initialization time,
the initial beliefs are sent to the Belief Base actor to be asserted and initial goals
are adopted sequentially in a synchronous manner, i.e., there is no concurrency.

Plan Rules

A plan rule < e, c, h >, should be translated into the object {e,c,h} which will
be part of the plan library. The triggering event of the plan rule e consists of a
trigger (one of +!,-!,+?,+,-) and a term t. The triggers convey the relevance of
the plan to different event types while t can be seen as the payload of that event;
+! relates to adoption of a new goal, -! relates to failure of a goal, +? relates
to test goals, + and - respectively relate to assertion and retraction of a belief.
The triggering event e then translates to an Event object which encapsulates the
trigger and the translated Term object of t. The context condition c is a Term
and translates to an Term object which can be sent to the Belief Base actor in a
synchronous manner, and the response to that message determines if the plan is
applicable in the current context and also returns the substitution for the variable

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 40PDF page: 40PDF page: 40PDF page: 40

28 Chapter 2. Developing a Scalable MAS Framework

(if any). Following is an excerpt of a translation for an achievement goal plan with
the signature +!example_goal(ExampleParam):

1 object adopt_achievement_example_goal_1 extends IGoal {

2 ...

3 def execute(args: Arguments) = {

4 vars += ("ExampleParam" -> Argumenst(0))

5 val r0 = executionContext.beliefBase.query(context_condition)

6 if (r0.result == True) {

7 r0.bindings foreach { case (k, v) => vars(k).bind_to(v) }

8 plan0(vars)

where firstly (example, Line 4) the arguments of the event are added as local
named variables based on the plan parameters, then (Line 5) the belief base of
the agent is queried to check if the context condition of the plan is a logical
consequence, and if that is true (Line 6) then all the variable substitutions of the
query are added to local variables bindings (Line 7) and finally, the plan body is
executed with the given variable bindings (Line 8).

The plan body h of a plan rule consist of zero or more steps. It is translated into
a function, which contains the steps of h as imperative lines of code implemented
in it. Each type of step is translated differently as is described below.

Primitive Actions A primitive action of the form #h(...) is in practice a
lower-level function call in the underlying language and it is translated into a call
to a function h(...) with its respective parameters. In the case of Java/Scala, this
can be any callable entity on JVM’s classpath. Take for example Scala’s println
method, to call this method as a primitive action a simple #println("hello") can
be a statement used in ASC2, and a translation of this call will be:

primitive_handler.execute(() => println(StringTerm("hello")))

Note that in this translation the object primitive_handler is a dependency of
the agent that in its default implementation simply calls the function passed to
it, but, can be potentially customized and injected to the agent for more flexible
control on what and how the functions are being called.

However, often the designer will need to define new domain specific methods
to call from the agent’s script as primitive actions, and these methods need
access to the execution context of the agent itself. In every block of code in the
translated code, there is an implicit value 5 called executionContext that contains
the information about the agent and its execution context. This object contains
information varying from simple attributes e.g., agent’s name and type, to more

5This specifically refers to Scala’s implicit values, these values do not need to be passed
explicitly in a function call, instead if the corresponding method has declared them as an implicit
parameter in its signature, Scala will automatically look for them and pass them along as a
parameter.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 41PDF page: 41PDF page: 41PDF page: 41

2.3. AgentScript Cross-Compiler (ASC2) 29

technical information e.g., the current thread the function was called in, to even
higher level information e.g., the intention or goal that was the source of the call
or even on which agent’s request this goal was adopted. To access this object
from the context of a primitive action, the designer merely needs to declare it as
an implicit parameter for the corresponding method. Take for example a simple
primitive action that prints the agent’s name and can be called from the script as
#print_name, the implementation for this function will be:

def print_name()(implicit executionContext: ExecutionContext) =

println(executionContext.name)

One of the most important advantage about how ASC2 handles primitive
actions is that they do not need to be implemented in any specific class nor
do they need to be passed to the agents at initialization time. This makes the
development of agents and MAS much more scalable as primitive actions in a
domain and the agent’s scripts are completely isolated: the #print_me action can
be built, packaged as a JVM artifact and placed in an artifact repository, then, it
can simply be utilized by other designers by importing that artifact in a project6.

Variables and Assignment Statements Variable assignment statements in
form of V = term are used to (re-)assign the result value of an Term term to a
variable V. ASC2 uses an internal map-like approach to store variables that also
manages variable scopes, meaning that each code block (e.g, plan body, condition
block) holds a map of all variables declared in that scope which also inherits the
variables in its parent scope. Every read/write to a variable V then becomes a
read/write operation to a member of the variable’s map with the key "V". A
variable assignment is translated to an (overwriting) append operation for the
variable’s map by using the V as the key and exp as the value. As an example
the statement V = V + 1 is translated to:

vars += ("V" -> (vars("V") + IntTerm(1)))

Belief Updates Belief update steps are composed of a prefix +,- and a term
t. The prefixes respectively mean assertion and retraction. As the belief base
of the agent is abstracted by the Belief Base actor, a belief update step is a
blocking message to the Belief Base actor about assertion or retraction of the Term
object of t. At a practical level, after translation belief-updates are technically
low-level calls to a specific function, take for example the statement +at(home),
when translated becomes:

belief_handler.execute(

Belief.ASSERT,

StructTerm("at",Seq(AtomTerm("home"))))

6The more detailed exploration of development ecosystem in ASC2 is illustrated in Chapter 4

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 42PDF page: 42PDF page: 42PDF page: 42

30 Chapter 2. Developing a Scalable MAS Framework

In this code the object belief_handler is a dependency of the agent that in its
default implementation performs the aforementioned messaging with the Belief
Base actor, but, can be potentially customized and injected into the agent for more
flexible control on how belief updates are handled. Furthermore, ASC2 agents also
react to belief-update triggers that may happen by assertion or retraction of a
belief, however that process is completely controlled by the Belief Base actor that
in its default implementation when a belief is asserted or retracted sends event
messages to the Interface actor; this process can be customized by the designer7.

Sub-Goal Adoption Task decomposition is crucial component of BDI-like
agents and in essence is the ability to adopt sub-goals depending on the context
of a plan. At the syntactic level, a (sub-)goal adoption is a prefix (e.g, !,?) plus
a term t. The prefixes respectively mean achievement and test goals. In the
translation method a sub-goal adoption step is translated as two phases, (i) a
plan selection by using SP is done to select and fetch a plan rule object {e,c,h}
from the plan library, (ii) the function h(...) is called with any parameters that
t may have as the arguments of h. This process becomes rather simple with the
translation, as an example, the goal adoption step:

!example_goal(Var).

translates to the valid Scala statement:

adopt_achievement_example_goal_1.execute(Parameters(List(vars("Var"))))

which is effectively a simple JVM-level function call.

Control Flow Structures The compilation method of ASC2 supports a straight-
forward mapping of simple control flow structures such as loops and conditionals
to their executable counterparts. The translation of these control structures to
the underlying language is performed one-to-one; for example an if/else in the
DSL is simply translated to an if/else in the underlying language. Take the
simple statement:

if(Var =< 10) { Var = Var+1; }

based on the translation of terms and variable assignments, translates to the valid
Scala statement:

if(vars("Var") <= IntTerm(10)) {

vars += ("Var" -> (vars("Var") + IntTerm(1))

}

7At this point it may seem this much flexibility is not a requirement for a BDI framework.
Evidently, most BDI frameworks are designed with the assumption of using a prolog-like
backward-chaining query-response belief base. However, there are many interesting experiments
that can be performed if that was not a limitation, an example illustrated in Chapter 5 where the
belief base of the agents is replaced with a forward chaining norm reasoner that is continuously
producing normative events for the agent.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 43PDF page: 43PDF page: 43PDF page: 43

2.4. Performance Analysis 31

2.3.4 Tools for Execution

The architecture of ASC2 agents is based on actors and for their execution these
actors require an actor system that spawn and start them. The implementation
of ASC2 is written in Scala and is based on the Akka framework. In addition to a
compiler8, it includes a minimal infrastructure that is able to spawn and start the
compiled agents9.

Communication Interface All the external communications of the agent are
transmitted through one (or more) transportation layer. This layer needs to
be specified to enable communication between agents. The framework remains
agnostic with respect the transportation layer as long as there is an interface to
convert messages from and to ASC2’s message protocol. The default transportation
layer makes use of Akka’s typed messages. However, this layer is one of the
dependencies that is injected into the agents at initialization time. This allows
the designer to implement this layer with any technology (e.g., REST API, gRPC,
Message Queues) and inject it into agents to allow them to communicate with
other agents (and other entities) using that technology without the need to modify
the framework or even the script of the agents.

The communications interface of the agents is based on speech act preformatives.
On a practical level, they are implemented with actions like #achieve which
relays an achievement goal event, #tell and #untell which relay belief-update
events, and #ask/#respond which can be used between agents as synchronous
communication with test goal events.

2.4 Performance Analysis

The following section proposes quantitative comparisons between the ASC2 frame-
work and three other frameworks: Jason (v2.5), ASTRA (v1.0.0) and Sarl
(v0.11.0). Jason [26] was chosen because, like ASC2, it uses a language based
on AgentSpeak(L), is implemented in Java and as reported by [36] potentially
outperforms other BDI frameworks. ASTRA and Sarl are both also implemented
in Java, but, more importantly, like ASC2, rely on a compilation approach.

Performance comparison is effectuated by means of two fairly standard bench-
marks (token ring, chameneos redux), close to what has been presented in [36]. The
main difference w.r.t. [36] is the metrics, as we separate the interpretation/setup
time from the execution time, to present better insights on how these frameworks
operate. An additional benchmark (service point) was also performed to assess
the ability of the frameworks to allow concurrent decomposition of tasks inside
the agents. The benchmarks were performed on a Debian GNU/Linux 10 machine

8Source code: https://github.com/mostafamohajeri/scriptcc-translator.
9Source code: https://github.com/mostafamohajeri/agentscript.

https://github.com/mostafamohajeri/scriptcc-translator.9Source
https://github.com/mostafamohajeri/scriptcc-translator.9Source
https://github.com/mostafamohajeri/agentscript

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 44PDF page: 44PDF page: 44PDF page: 44

32 Chapter 2. Developing a Scalable MAS Framework

with an 8 core Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz CPU and 64GB
of RAM using Java version 11 with GraalVM 20 JRE. Each benchmark was
performed 10 times and the JVM was stopped between each run to avoid the
impact of one experiment on the next.

In the first two benchmark scenarios, three metrics are recorded: (1) total
interpretation/setup time, including agent creation time, (2) internal execution
time measured from the instant that the first agent starts until the completion of
the test, and (3) CPU core load. Execution and data gathering is controlled by a
Python script that runs the benchmarks in the desired dimensions and records
the metrics10.

2.4.1 Token Ring

The token ring benchmark is a simple program targeting multiple aspects of
parallel frameworks: handling different number of agents, message passing and
level of concurrency each agent can achieve. The testing scenario consists of W
worker agents, T tokens are distributed among the workers, and each token has to
be passed N times in a ring. When all T tokens have been passed N times, the
program ends. To run this benchmark a program should:

• create W number of workers;

• each worker should be connected to its neighbor forming a complete ring;

• initially each token 1 ≤ i ≤ T is assigned to a worker 1 ≤ j ≤ W with the
equation j = i ∗ (W/T)

• each worker sends the token to its neighbor

• The program finishes when all T tokens have been passed N times

The script for a worker agent in ASC2 is presented in Listing 4. The exper-
iment was performed by varying W , T and N independently within the values
{4, 16, 256, 1k, 4k}, resulting in 125 different configurations for each framework.
We also put a 1 minute limit for each execution and anything beyond that is
considered a timeout.

Implementation Notes

In all implementations a broker agent is present that starts the benchmark by
distributing the tokens and gathers the completed tokens to stop the execution.
There is a difference in the Sarl implementation. As Sarl does not provide a
central agent resolver to address agents by name, an extra step is implemented in
the broker to iterate over all worker agents and link them together in a ring.

10Source code: https://github.com/uva-cci/aop-benchmarks-agere2020.

https://github.com/uva-cci/aop-benchmarks-agere2020

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 45PDF page: 45PDF page: 45PDF page: 45

2.4. Performance Analysis 33

1 +!init(W) : W > 1 =>

2 Nbr = "worker" +

3 ((#asString(Name).replaceAll("worker","").toInt mod W) + 1);

4 +neighbor(Nbr).

5

6 +!token(0) =>

7 #achieve("master", done).

8

9 +!token(N) : neighbor(Nbr) =>

10 #achieve(Nbr, token(N - 1)).

Listing 4: Token ring worker script in AgentScript DSL

Results

A summary of the results for this benchmark is illustrated in Figures 2.3 and
2.4. In Figure 2.3, the number of agents W is the variable while N and T are
kept constant with two settings (N = 256, T = 256) and (N = 4k, T = 4k). Only
Jason and ASC2 were able to execute (N = 4k, T = 4k). Sarl was able to only
execute the benchmark up to W = 256 agents and timed out with a warning11.

ASTRA seemed stable enough to finish the (N = 4k, T = 4k) test but not
within 1 minute. ASTRA executes very poorly for (N = 256, T = 256) test,
especially with lower number of worker agents, plausibly because with less worker
agents each agent has more concurrent threads of work to execute. ASC2 and
Jason both perform almost without much effect w.r.t. number of agents, suggesting
that both frameworks can handle concurrency inside agents to a good extent,
although in all cases Jason performs marginally better.

In Figure 2.4 another view on the results is presented. This time the variable
is the number of tokens T , whereas W,N are kept constant in two settings:
(W = 256, N = 256) and (W = 4k,N = 4k). Like in the previous results Sarl
could only finish the (W = 256, N = 256) test. ASTRA was able to execute the
(W = 4k,N = 4k) test but only up to T = 1k and timed out after that. In the
(W = 256, N = 256) Jason and ASC2 performed much better and scaled almost
linearly with the number of tokens which shows that both frameworks can handle
the increased concurrency and the higher number of messages to be passed in an
efficient manner. On the other hand Sarl and ASTRA performed poorly under
the increasing amount of tokens. In the (W = 4k,N = 4k) test Jason performs
marginally better than ASC2.

11Potentially dangerous stack overflow in locks.ReentrantReadWriteLock. We sus-
pect this occurs because at the start all workers need to send a message to the broker to get
their neighbors and the broker can not handle this amount (≥ 1024) of concurrent messages.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 46PDF page: 46PDF page: 46PDF page: 46

34 Chapter 2. Developing a Scalable MAS Framework

41 42 43 44 45 46

103

104

Total number of agents WA
ve
ra
ge

in
te
rn
al

ex
ec
u
ti
on

ti
m
e
(m

s)

(AgScCC,4k,4k) (Jason,256,256)

(AgScCC,256,256) (ASTRA,256,256)

(Jason,4k,4k) (Sarl,256,256)

Figure 2.3: Token ring results for each (framework, T,N)

CPU Load Figure 2.5 and Figure 2.6 present the average core load during
the token ring test respectively in the W,T = 256 and N = 4096 and in the
W,T,N = 4k settings. In the lower settings (Figure 2.5) Jason and ASTRA have
much less CPU demand than ASC2 and Sarl. On the other hand, in the higher
setting (Figure 2.6) the CPU load between Jason and ASC2 is closer (respectively
85.7% and 88.6%, vs 57.7% and 77.7% in the lower setting). This can be an
indication that ASC2 has a higher footprint on the CPU load, especially for
initialization time.

To understand how much each framework can distribute the load between
CPU cores we have to look at the standard deviation of CPU load data. A higher
deviation indicates that the framework is not balancing the load between cores.
ASTRA shows to have very poor load balancing with the deviation almost as
high as the average which can mean that some of the cores are not even used in
execution. Sarl has a high balancing of cores even in lower setting. In the higher
settings both Jason and ASC2 seem to distribute the load between CPU cores
sufficiently.

Initialization Time To assess the initialization time, total execution time is
subtracted by the internal execution time in the lowest setting with N = 4k
and T = 4k and the results are presented for an increasing number of agents in
Figure 2.7. ASTRA proves to have the fastest initialization, at least up to 4k
agents, followed by Jason and closely by ASC2. Sarl seems to have the slowest
initialization time and scales very badly with the number of agents.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 47PDF page: 47PDF page: 47PDF page: 47

2.4. Performance Analysis 35

41 42 43 44 45 46

102

103

104

105

Total number of tokens TA
ve
ra
ge

in
te
rn
al

ex
ec
u
ti
on

ti
m
e
(m

s)

(AgScCC,4k,4k) (ASTRA,4k,4k)

(AgScCC,256,256) (ASTRA,256,256)

(Jason,4k,4k) (Sarl,256,256)

(Jason,256,256)

Figure 2.4: Token ring results for each (framework,W,N)

2.4.2 Chameneos Redux

The second benchmark is adopted from [104] and is a test intended to capture the
effects of one limiting point to the execution framework. The scenario consists
of C chameneo creatures living in the jungle; they can go to a common place to
meet other creatures and mutate with them. Each creature has a color assigned
to it from a color pool and after mutation its colour changes based on the color of
the other creature it met. These meetings should happen for a total number of N
times. To run this benchmark a program should:

• create C differently colored (blue, red, yellow), differently named, concurrent
chameneo creatures

• write all the possible complementary color combinations;

• write the initial color of each creature;

• each creature will repeatedly go to the meeting place and meet, or wait to
meet, another chameneo;

• both creatures will change color to complement the color of the chameneo
that they met;

• after N meetings have taken place, for each creature write the number of
creatures met and the number of times the creature met a creature with the
same name (should be zero).

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 48PDF page: 48PDF page: 48PDF page: 48

36 Chapter 2. Developing a Scalable MAS Framework

0

20

40

60

80

100

77.79

55.78

29.19

89.13

av
er
ag
e
C
P
U

co
re

lo
ad

(%
)

AgScrptCC Jason ASTRA SARL

Figure 2.5: CPU load (average and standard deviation on 8 cores) in token ring
with N = 4k, T = 256 and W = 256

0

20

40

60

80

100
88.66 85.74

av
er
ag
e
C
P
U

co
re

lo
ad

(%
)

AgScrptCC Jason

Figure 2.6: CPU load (average and standard deviation on 8 cores) in token ring
with N = 4k, T = 4k and W = 4k

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 49PDF page: 49PDF page: 49PDF page: 49

2.4. Performance Analysis 37

41 42 43 44 45 46
102

103

104

Total number of agent W

A
ve
ra
ge

in
it
ia
li
za
ti
on

ti
m
e
(m

s)

ASC2 ASTRA

Jason Sarl

Figure 2.7: Initialization time in token ring with T = 4, N = 4

• the program finishes when N meetings have happened.

The experiment was performed with the set of variables C = {64, 256, 1k, 4k}
and N = {1k, 4k, 16k, 64k}. This provide us with 20 different configurations for
each framework. All tests were given a 1 minute time limit and it is considered a
timeout after that.

Implementation Notes

In all implementations a broker agent is present that acts as the meeting point for
chameneos. This agent is the main point of this benchmark as it will be constantly
under high number of requests from the chameneos agents.

Results

The first view on the results is presented in Figure 2.8. In this setting the number
of meetings N is kept constant at two values 4k and 64k whilst the number of
chameneos is the variable. The results show that Jason and ASC2 scale well with
the number of agents while ASC2 performs marginally better in the N = 64k test.
Sarl and ASTRA suffer from the higher number of agents to the point that Sarl
could finish both tests only up to C = 1k agents while ASTRA finishing N = 64k
test only in the C = 64 agents setting.

Figure 2.9 presents another view on the results. This time the number of
chameneos C is kept constant at 256 and 4k, whilst the number of meetings N
is the variable. Sarl could only finish the C = 256 test while ASTRA could only
finish it up to N = 16k and timing out after that. ASTRA was also only able to

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 50PDF page: 50PDF page: 50PDF page: 50

38 Chapter 2. Developing a Scalable MAS Framework

43 44 45 46

103

104

Total number of chameneos CA
ve
ra
ge

in
te
rn
al

ex
ec
u
ti
on

ti
m
e
(m

s)

(AgScCC,4k) (ASTRA,4k)

(AgScCC,64k) (ASTRA,64k)

(Jason,4k) (Sarl,4k)

(Jason,64k) (Sarl,64k)

Figure 2.8: Chameneos redux results for each (framework, N)

finish the C = 4k test with C = 64 number chameneos. ASC2 and Jason both
completed the tests with linear scaling, with ASC2 outperforming Jason slightly in
the C = 4k test. This shows that both Jason and ASC2 can handle higher levels
of concurrency in the broker agent w.r.t. the increasing number of concurrent
requests.

2.4.3 Service Point

This last benchmark is not about performance. Rather, it is designed to illustrate
the differences between the execution in a step-based framework like Jason in
contrast to a compilation-based framework like ASC2, focusing on how they handle
actions (namely time-consuming primitive actions) specified outside their DSL.
The scenario of this benchmark consists of one service point and N number of
consumers. Each consumer sends R requests to the service point and waits for
the response. The service point needs a random amount of time t (0 ≤ t ≤ 5000
ms) to process each request. A simple Thread.sleep(t) is used to mimic thread
time consumption. To run this benchmark a program should

• create 1 service point and N service consumers.

• each consumer will send R number of requests to the service point

• the program finishes when all of the R ∗N requests have been responded

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 51PDF page: 51PDF page: 51PDF page: 51

2.4. Performance Analysis 39

44 45 46 47 48

103

104

Total number of meetings NA
ve
ra
ge

in
te
rn
al

ex
ec
u
ti
on

ti
m
e
(m

s)

(AgScCC,256) (ASTRA,256)

(AgScCC,4k) (ASTRA,4096)

(Jason,256) (Sarl,256)

(Jason,4k)

Figure 2.9: Chameneos redux results for each (framework,C)

The experiment was done only on Jason and ASC2 with variables N = {1, 4, 16}
and R = {1, 4, 16}. With respect to total number of request R ∗N , this gives us
with 5 unique configurations. To account for the non-determinism added by the
randomization each configuration is executed for 100 times.

Results

The results of this experiment are presented in Figure 2.10. Jason performs much
worse in this scenario, as it is not being able to finish the 256 requests within a 200
seconds timeout. This is even more strange as in our setting Jason is set to use
8 threads and ASC2 to 6 and by looking at the results we can see that ASC2 is
always using the thread times completely but Jason is not. The reason for this is
that Jason uses a sequential reasoning cycle inside each agent; at every reasoning
cycle, a Jason agent takes the next step from each of its intentions and executes
them. The reasoning cycle ends when all intentions execute one step. This means
that if in the reasoning cycle of an agent one of these steps is a time-consuming
primitive action, the whole cycle will be blocked12. On the contrary a compiled
agent does not have any notion of steps at run-time and the parallelism between
intentions of the agent is also handled by the underlying concurrency model, in
this case the Actor model. This matter is further discussed in 2.5.3.

12Jason provides extra built-in directives like .wait to mimic unblocking suspension of
intentions but that is beyond the context of this benchmark.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 52PDF page: 52PDF page: 52PDF page: 52

40 Chapter 2. Developing a Scalable MAS Framework

40 41 42 43 44

104

105

Total number of requests (R ∗N)

In
te
rn
al

ex
ec
u
ti
on

ti
m
e
(m

s)

ASC2

Jason

Figure 2.10: Service point scenario results

2.5 Discussion

This chapter presents and evaluates a framework for an AOP language based on
AgentSpeack(L) relying on compilation. Compilation in this context is not novel
as it has been used previously by other AOP frameworks like SARL [141] and
ASTRA [65]. The novelty of this work lies in two aspects. First, unlike SARL and
ASTRA, that use a DSL very close to their underlying language (Java), ASC2 uses
a logic-based DSL close to AgentSpeak(L). As our pipeline starts from an antlr
grammar, in principle the current DSL can be replaced by any other AOP language
that can be mapped to the ASC2 abstract execution architecture. Second, our
approach maps the DSL into an architecture that exploits the Actor model. This
means that not only the final executable model is more robust, because it takes
advantage of the established concurrency model and the maturity of the libraries
implementing the Actor model (e.g, Akka), but also that the translation itself is
an open process, so its product becomes in principle more understandable for the
programmer.

2.5.1 Performance

The execution model of ASC2 is closer to Sarl and ASTRA than to Jason (see
2.5.3), but, as shown by the benchmarks, it is substantially outperforming both
Sarl and ASTRA. At the same time, ASC2 performance was below what we
expected before running these experiments. Investigating possible causes by
profiling the execution of benchmarks, we found out that a considerable amount
of execution time is spent on the blocking due to synchronized query calls to the
belief base. These calls had to be synchronized because Prolog engines like Styla
and tuProlog [64] (another candidate solution we tested for handling belief bases)

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 53PDF page: 53PDF page: 53PDF page: 53

2.5. Discussion 41

are inherently made for single thread access. Even a simple read query to a Prolog
engine still counts as write access because of the backtracking. We believe once
this issue is addressed the performances of ASC2 will greatly improve.

2.5.2 Language

Although all of the considered frameworks propose DSLs to program reactive
agents, their bases are different. Agent-ScriptCC’s DSL is based on AgentSpeak(L),
which gives to the language a logic-oriented flavour; this is also the case for Jason,
and both frameworks can take advantage of Prolog-style terms. ASTRA’s DSL
is also based on concepts defined in AgentSpeak(L) but with more syntactic
resemblance to Java. Sarl’s language does not try to be a logic-based language,
therefore it does not contain components corresponding to terms; it is rather very
close to Java.

2.5.3 Execution and Parallelism

As a common ground, all these frameworks are used to specify reactive agents,
but they differ in how the agent’s (re)actions are executed. The most particular
solution comes with Jason which uses the concept of steps. The Jason interpreter
treats each symbolic step/instruction in a plan of a reactive rule as a single unit of
execution, and emulates an imperative program by executing them in a sequence
in consecutive reasoning cycles. In contrast, in the other three frameworks, the
steps of the reactive rules are already imperative programs ready to be executed.
The approach taken by Jason has important consequences especially when agents
execute multiple parallel threads of work (intentions) at the same time. This
concept is examined more in detail in section 2.4 and in [65].

2.5.4 Access to the Lower-Level Language

One of the motivations behind developing ASC2 has been to enable access to
libraries defined in the underlying general-purpose programming language of choice
in a easy and seamless way. In our view this impacts the usability of the framework
in larger applications. Leading by an example, consider a programmer that needs
to call the Java function Thread.sleep(1) in a reactive rule. In Jason one needs
to create an extra class extending one of Jason’s internal classes (Agent, Action
or Environment) and define a method that wraps this low level function and then
call the wrapping method from the agent program. In ASTRA it is almost the
same as Jason and one needs to create a class extending the type Module, wrap
this function inside a method, and annotate it appropriately to be able to call it
from the agent program. On the opposite side, this is entirely different for Sarl
and ASC2, as one can simply call this function directly from the agent program.
In case of ASC2 this can be done with #Thread.sleep(1).

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 54PDF page: 54PDF page: 54PDF page: 54

42 Chapter 2. Developing a Scalable MAS Framework

2.5.5 Communication

The communication in ASC2 is entirely externalized, both for agent-to-agent and
agent-to-environment communication. In the current implementation communi-
cation between agents uses Akka’s internal message system but this can easily
be replaced with any other type of communication mechanism, e.g. by using a
message queue (MQ) to be able to execute the agents in a distributed setting. For
the other frameworks, externalization is possible, but requires specific wrappers
to the communication infrastructures (Jason with JADE).

2.6 Conclusion

The slowly but steadily increasing interest in programming languages based on
BDI or functionally similar architectures for virtual assistants, robotics, (serious)
gaming, as well as for social simulations, hints that there is a general consensus
that these solutions might be suitable to reproduce human-like reasoning, or rather
human-intelligible computation.

Historically, the majority of contributions in this area were concerned mostly
by the logical aspects of the problem rather than its computational aspects
[96]. However, more recent contributions revealed the presence of issues w.r.t.
computational performance and compatibility to modern environments and tools,
motivating efforts to redevelop existing BDI frameworks according to best practices
[6, 3]. Looking at intentional programming in the longer term, we need to
acknowledge that operational settings differ from the typical low-scale simulation
setting in which it is used today. Besides a difference in scale, components can
also be fully distributed. Because of this, a future target feature of ASC2 will be
the capability to deploy and execute agents in distributed settings. This seems to
be an achievable objective as there are already approaches available to run actors
in distributed environments.

An initial, additional motivation of using an actor-oriented architecture for the
intentional agents is that by having this extra level of abstraction the agent become
more modular, enabling the augmentation of agents with complementary machinery
like using AI modules [152], normative reasoning modules [120], planning (e.g.
HTN, STRIPS) modules [119] and preference checking modules [162, 122]. Defining
adequate interfaces to support the different types of add-ons for ASC2 agents will
be investigated in the future.

Finally, the benchmarks reported in this chapter demonstrates that despite
the initial maturity level of the framework, ASC2 is already competitive against
existing frameworks, motivating further exploration.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 55PDF page: 55PDF page: 55PDF page: 55

Chapter 3

Transparent Decisions in Social Actors:
Preferences

Computational agents based on the BDI framework typically rely on abstract
plans and plan refinement to reach a degree of autonomy in dynamic environments:
agents are provided with the ability to select how-to achieve their goals by choosing
from a set of options. In this chapter we focus on a related, yet under-studied
feature: abstract goals. These constructs refer to the ability of agents to adopt goals
that are not fully grounded at the moment of invocation, refining them only when
and where needed: the ability to select what-to (concretely) achieve at run-time.
We present a preference-based approach to goal refinement, defining preferences
based on extended Ceteris Paribus Networks (CP-Nets) for an AgentSpeak(L)-like
agent programming language, and mapping the established CP-Nets logic and
algorithms to guide the goal refinement step. As a technical contribution, we
present an implementation of this method that solely uses a Prolog-like inference
engine of the agent’s belief-base to reason about preferences, thus minimally
affecting the decision-making mechanisms hard-coded in the agent framework.
The aim of this chapter is (1) to introduce a generic approach for embedding explicit
preferences into BDI agents, and (2) to provide a proof-of-concept implementation
of this approach in ASC2.1

3.1 Introduction

Computational agents based on the BDI framework typically rely on abstract
plans and plan refinement to reach a degree of autonomy in dynamic environments.
In practice, relative autonomy in this context consists in the ability of an agent
to select how-to achieve their goals by choosing from a set of options. BDI agent
scripts typically consist of hierarchical, partial, abstract plans. This contrasts with

1The material presented in this chapter refines and extends elements presented in [122, 123,
124].

43

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 56PDF page: 56PDF page: 56PDF page: 56

44 Chapter 3. Transparent Decisions in Social Actors: Preferences

classic forms of planning, providing agents with fully-grounded policy, designed to
reach a certain specific objective.

This work focuses on a related, yet under-studied feature: abstract goals. These
constructs refer to the ability of agents to adopt goals that are not fully grounded
at the moment of invocation, refining them only when and where needed, that is,
the ability to select what-to (concretely) achieve at run-time. Examples of abstract
goals can be found typically in activity-level characterizations of behaviour, e.g.
walking (where?), eating something (what?), meeting someone (who?), selling
(what? to whom?), etc.

The specification of abstract goals is a feature already present in some agent
frameworks as those based on the AgentSpeak(L) language, albeit they rely on
simplistic mechanisms for goal refinement. The present work aims to cover the
goal refinement step (from abstract goals to concrete goals) as part of the agent’s
decision-making cycle. For doing so, we present a preference-based approach to
goal refinement. We start from defining preferences based on Ceteris Paribus
Networks (CP-Nets) [29]—more precisely, in the extended form of Ceteris Paribus
Theories (CP-Theories) [166]—and we consider the established CP-Net logic and
algorithms to guide the goal refinement of the agent. At implementation level,
our target is an AgentSpeak(L)-like [139] agent programming language. Since
Jason [26], AgentSpeak(L) programs are enriched with Prolog rules and facts for
knowledge-level processing, occurring e.g. for testing context conditions during the
plan selection phase. We present therefore an implementation of a preference-based
goal refinement method that solely uses a Prolog-like inference engine of the agent’s
belief-base to reason about preferences, requiring only a minimal modification to
the decision-making mechanisms hard-coded in the agent framework. To achieve
this, a transformation method is proposed to map an extended version of CP-Nets
and CP-Theories into Prolog facts and rules for the script of the AgentSpeak(L)
agent, as well as a Prolog implementation of the algorithms necessary to reason
with preferences.

The chapter proceeds as follows: section 3.2 provides a background about the
concepts used in this work; section 3.3 presents the method and examples for
preference-based abstract goal refinement in AgentSpeak(L) agents; section 3.4
describes a practical implementation of this method, and section 3.5 elaborates a
discussion and conclusion over the proposed method.

3.2 Background

3.2.1 Abstract Plans in BDI Agents

Agents specified following the BDI paradigm are characterized by three mental
attitudes. Beliefs are facts that the agent believes to be true. Desires capture the
motivational dimension of the agent, typically conflated with the more concrete

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 57PDF page: 57PDF page: 57PDF page: 57

3.2. Background 45

form of goals, representing procedures/states that the agent wants to perfor-
m/achieve. Intentions are selected conducts (or plans) that the agent commits to
(in order to advance its desires).

Since their origin [140], the essential feature associated to BDI architectures is
the ability to instantiate abstract plans that can (a) react to specific situations,
and (b) be invoked based on their purpose. Consequently, the BDI execution
model often relies on a reactive model of computation, usually in the form of
some type of event-condition-action (ECA) rules often referred to as plans. Plans
are uninstantiated specifications of the means (in terms of course of actions)
for achieving a certain goal [140]. These constructs represent the procedural
knowledge (how-to) of the agent. There are multiple proposals in the literature for
programming language and architecture of BDI agents, the most commonly used
being AgentSpeak(L) [139], which will serve as basis for the present proposal.

3.2.2 Preference Languages

Preferences play a crucial role in decision-making [135]. Several models of prefer-
ences have been presented in the literature (e.g. on decision-making, planning,
etc.), with various levels of granularity and expressiveness (see e.g. [70]). Several
models of preferences have been presented in the computational literature, with
various levels of granularity and expressiveness. For a comprehensive overview
(specifically in AI planning), we direct the reader to [102, 30]. On a higher level,
preference representation methods can be divided into quantitative and qualitative
[102].

The most straightforward quantitative approaches are based upon utility theory
and related forms of decision theory.Typically, in quantitative approaches there is
a utility function that assigns to each action in each state a (negative or positive)
value, then the agent/the planner system tries to maximise its utility by choosing
actions that would result in higher total utility (including avoiding actions with
negative utility, e.g. due to cost).

A hybrid quantitative method is provided by PDDL3 [83], an extension of
the planning domain definition language (PDDL) [118]. Although based on
qualitative descriptions, these preferences are considered quantitative [7] because
the valuation of each preference is expressed with a numerical value. Although
utility-based approaches bring clear computational advantages, they also suffer
from the non-trivial issue of translating users’ preferences into utility functions.

This explains the existence of a family of qualitative or hybrid solutions.
The logical preference description (LPD) language [32] uses ranked knowledge
bases alongside preference strategies to present preference descriptions. The LPP
language [16] is a first-order preference language defined in situation calculus to
reason about conditional and qualitative preference. Other preference models,
such as GAI networks [88], CP-Nets [29] and qualitative preference systems (QPS)
[163], have been specifically introduced for taking into account dependencies and

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 58PDF page: 58PDF page: 58PDF page: 58

46 Chapter 3. Transparent Decisions in Social Actors: Preferences

conditions between preferences. GAI networks build upon the assumption of
generalized additive independence, and in doing so they enable computing the
utility contribution of every single attribute/subset of attributes. QPS offers a
framework for representing multi-criteria preferences based on a lexicographic
rule which combines basic preferences over variables, and a cardinality-based rule
which counts criteria that are satisfied; QPS have been extended with goal-based
preferences [164], allowing to define preferences from the context of goals.

In the present work, we decided to focus on CP-Nets, and their extension
CP-Theories [166], for two main reasons: they rely on weaker assumptions, and
exhibit primarily a qualitative nature.

Ceteris Paribus networks (CP-Nets)

Conditional ceteris paribus preferences networks (CP-Nets) are a compact rep-
resentation of preferences in domains with finite attributes of interest [29]. An
attribute of interest is an attribute in the world (e.g. restaurant) that the agent
has some sort of preference over its possible values (e.g. italian and french).
CP-Nets build upon the idea that most of the preferences people make explicit
are expressed jointly with an implicit ceteris paribus (“all things being equal”)
assumption. For instance, when someone says “I prefer a French restaurant over
an Italian one”, they do not mean at all costs and situations, but that they prefer
a French restaurant (over an Italian one), all other things being equal. An example
of conditional preference is “If I’m at a French restaurant, I prefer fish over meat”.
CP-Theories [166] extend CP-Nets adding stronger conditional statements with
the construct “regardless of ”, allowing some attributes to be released from the
equality rule.

In general, CP-Nets can be associated with two tasks: (1) finding the most
preferred outcome on a certain domain of variables (2) comparing two outcomes
with different criteria. Both CP-Nets and CP-Theories provide efficient algorithms
for these tasks.

Preferences in BDI Agents

Goals are used to identify desired states or outcomes, and preferences are used
to identify more (or less) desired states or outcomes. While goals are a central
aspect in BDI agents, so far, none of the main BDI frameworks and languages
include preferences as part of the definition of the agents. This explains why
there exist already previous studies that, like this work, attempt to enhance BDI
agents with explicit preferences. Visser et al. [161, 162] present an approach
to embed preferences defined in the LPP language into BDI agents to guide
plan selection. Nodes in the goal-plan tree of the agent are annotated by the
designer about the effects of that plan and then this information is propagated
automatically to other nodes in the tree at compile time. Then, at run-time, the

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 59PDF page: 59PDF page: 59PDF page: 59

3.3. Method 47

agent uses the LPP logic to select the most preferred plan for a goal based on
this information. Dasgupta et al. [53] proposes a lookahead method to enhance
AgentSpeak(L) agents with constraints and objectives that the agent can use for
plan selection at run-time; their approach also requires annotations for plans to
reason about the preferability of plans. Mohajeri et al. [122, 123] add preferences
in form of CP-Nets in AgentSpeak(L)-like agents, however, their approach consider
a cross-compilation step: they annotate primitive actions of agents with their
expected effects, and this information is then propagated through the goal plan
tree to create a conditional ordering between plans. Padgham et al. [131] add
situational preferences as part of plan definitions in a BDI language. The agent
can use them to quantify the value of each plan at run-time. Their method is
similar to this work in the sense that it does not require any lookahead, but it is
different because they add preference valuations as part of each plan, which are
then used in plan selection with the implicit preference of maximizing them—this
makes the approach essentially a quantitative one.

3.3 Method

3.3.1 AgentSpeak(L) Agents

While this work mainly focuses on ASC2 as the BDI framework, the methods
proposed in this chapter target any frameworks that utilize AgentSpeak(L). The
main point of interest in BDI reasoning cycle for the preference reasoning approach
proposed in this chapter is the plan instantiation process. This process, as it was
briefly introduced in the previous section, starts when an event is selected for
processing. Firstly the event is unified with the triggering events of the plans in
the plan library. The ones that do unify are called relevant plans and the resulting
unifier is called the relevant unifiers. Then, for each relevant plan, the relevant
unifier is applied to its context condition and the result is queried against the
belief base to create zero or more substitutions such that the context is a logical
consequence of agent’s current belief. The composition of relevant unifier with
each substitution is called an applicable unifier. The following definitions apply:

Definition 3.1 (Plan)
A (reactive) plan is specified by e : C ⇒ H where e is a triggering event, C is a
formula capturing context conditions, and H is a sequence of sub-goals or actions
to be performed at the occurrence of the trigger event.

Definition 3.2 (Relevant plan)
A plan in the form of e : C ⇒ H is a relevant plan with respect to an event ε iff
there exists a most general unifier σ such that εσ = eσ. Then, σ is referred to as
the relevant unifier for ε.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 60PDF page: 60PDF page: 60PDF page: 60

48 Chapter 3. Transparent Decisions in Social Actors: Preferences

1 % (P1)

2 +!go_order(Loc,Meal) :

3 restaurant(Loc) & not at(Loc) =>

4 #move_to(Loc);

5 !order(Meal).

6 % (P2)

7 +!go_order(Loc,Meal) :

8 restaurant(Loc) & at(Loc) =>

9 !order(Meal).

10 % (P3)

11 +!order(meal(S,M,W)) :

12 meal(S,M,W) =>

13 #ask_waiter(meal(S,M,W)).

Listing 5: Reactive Plans of Food-ordering Agent

Definition 3.3 (Applicable plan)
A plan in the form of e : C ⇒ H is an applicable plan with respect to an event ε
iff there exists a relevant unifier σ for ε and there exists a substitution δ such that
Cσδ is a logical consequence of belief base B. The composition σδ is referred to as
the applicable unifier for ε and δ is referred to as a correct answer substitution.

Example 1

Imagine again the domestic robot from the previous chapter, an agent that upon
request, can go to a restaurant and order a three-course meal. This time the
agent’s plans and beliefs are expanded to give it more choice. The script for such
agent is presented in Listing 5. The agent has two plans for going to a restaurant
and ordering a meal: the first plan (P1) is applicable if the agent is not at a
restaurant at the moment, which means a step of moving (#move_to primitive
action) is needed prior to ordering the meal; the second plan (P2) is applicable if
the agent is already at the restaurant which means the agent will just adopt the
goal of ordering the meal. There is also one plan for ordering the meal (P3) which
is applicable if the agent has the belief that the meal it wants to order exists.
Suppose the agent selects an event with the trigger:

!go_order(french,meal(veg,meat,white))

For this event, both plans (P1) and (P2) are relevant with unifier σ:

{Loc/french, Meal/meal(veg,meat,white)}

Assuming that the belief base of the agent contains the beliefs restaurant(french)
(meaning that there exists a French restaurant) and at(home) (meaning that the
agent is at home), then only the first plan will be an applicable plan for this event,

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 61PDF page: 61PDF page: 61PDF page: 61

3.3. Method 49

and the applicable unifier will be the same as the relevant unifier. This entails
that only plan (P1) will be instantiated as:

+!go_order(french,meal(veg,meat,white)) :

restaurant(french) & not at(french) =>

#move_to(french);

!order(meal(veg,meat,white)).

Note that in case the agent had more than one applicable unifiers, meaning it
had more than one option to react to this goal, then the SO function would have
been called to select one of the options.

3.3.2 Abstract Events, Abstract Goals

Partial autonomy in dynamic environments is considered a core attribute of BDI
agents, and this is in fact one of the reasons that separates plan refinement in BDI
agents from classical planning approaches [57]. While the idea of choosing between
distinct plans to achieve a certain goal—typically referred to as plan selection—has
been investigated by the community as the principal point of autonomous choice
in BDI agents, there is indeed another important type of autonomy embedded
in BDI agents: abstract events. While the previous example only exhibited fully
grounded events, BDI agents, in particular those derived from AgentSpeak(L)
[140, 139] can indeed handle abstract events, referring to situations where an event
contains unbounded variables and these variables can be grounded by different
means such as context conditions of plans or test goals at any level in the plan
refinement of the event. It can be argued that if plan selection promotes autonomy
in the how-to dimension of the agent, abstract events, including the invocation of
abstract goals, promote autonomy in selecting (concretely) what-to with it.

Example 2

Consider the same agent presented in listing 5. This time we assume the agent has
more information about the environment: it has beliefs about two types of soups,
two types of main course, two types of wine, two restaurants, also it believes that
it is standing already in one of the restaurants (the french one), and finally it
has an inferential rule for which all possible triple of soup, main course and wine
form a meal combination. Those beliefs are presented as in listing 6.

Now assume the agent receives an abstract event !go_order(L,M) which ba-
sically puts no constraints over where the agent should go and what it should
order, and so gives it full autonomy to choose how to proceed. When the agent
receives this event, both plans P1 and P2 are considered relevant plans with
unifier {Loc/L, Meal/M}. But considering the context conditions and the belief
base, P1 will be applicable with unifier {Loc/italian, Meal/M} and P2 with
{Loc/french, Meal/M} (note that in both cases the second parameter is not

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 62PDF page: 62PDF page: 62PDF page: 62

50 Chapter 3. Transparent Decisions in Social Actors: Preferences

1 main(fish). main(meat). soup(veg). soup(fish).

2 wine(white). wine(red).

3 restaurant(french). restaurant(italian).

4 at(french).

5 meal(S,M,W) :- soup(S), main(M), wine(W).

Listing 6: Beliefs of Food-ordering Agent

Figure 3.1: Goal-Plan Refinement of the Agent

grounded as it is unified to another variable). At this point the agent’s rea-
soning engine needs to use its plan selection function to choose one of the two
plans. In both cases, the next event for the agent will be !order(M) and P3 is a
relevant plan for this event with unifier {M/meal(S,M,W)}. Taking into account
the unification occurring at context conditions, this event will have in principle
23 = 8 different applicable unifiers with all possible combinations for the meal, e.g:
{M/meal(veg,fish,white)}, for which, again, the plan selection function needs to
choose an option to start the actual execution. The goal-plan tree of this abstract
goal can be seen in Figure 3.1.

In current implementations of BDI frameworks based on AgentSpeak(L),
the three selection functions SE, SO, SI (respectively for events, plans/options,
and intentions) are typically exposed as abstract functions that the designer
can override to implement any type selection function. Although this approach
promotes flexibility, the fact that part of the decision-making remains external to
the agent script reduces readability, encapsulation, and transparency of the agent
programs, and makes the control more opaque to the designer. For these reasons,

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 63PDF page: 63PDF page: 63PDF page: 63

3.3. Method 51

the selection functions hardcoded should be kept as simple as possible.
Default implementations are based on selecting the first available option,

which is indeed a good example of simplicity. If we apply the default imple-
mentation also on this example, the first applicable unifier for !go_order(L,M)

is {Loc/italian, Meal/M}, and the first applicable unifier for !order(S,M,W) is
{M/meal(veg,fish,white)}.

3.3.3 CP-Nets and CP-Theories

In order to specify preferences, we start from the definition of CP-Nets given
in [29]. Given a set of variables X ∈ V , each having a finite set of values x,
conditional preference statements are in the form u : x � x′, where x, x′ are
assignments of a variable X ∈ V , and u is an assignment to a set of variables
U ⊆ V (parents of X). The interpretation of this statement is that given u, then
x is preferred to x′ all else equal, meaning, for all assignment s of the set of
variables S, where S = V − (U ∪ {X}), sux is preferred to sux′, where sux and
sux′ are two outcomes (complete assignment) to all variables of V . CP-Theories
are introduced in [166] to extend CP-Nets with stronger conditional statements.
These include preferential statements in the form u : x � x′[W], where W ⊆ V
which interprets that for all assignments w,w′ to variables of W and assignments
t to variables of T = V − (U ∪X ∪W), then the outcome tuxw is preferred to
the outcome tux′w′. This means that given u and any t, then x is preferred to x′

regardless of assignments to W .
Assuming Λ is a set of acyclic (with respect to parent-child relations) preference

relations over variables of V , and considering o, o′ are outcomes of V , then we
say Λ |= o � o′ iff o � o′ satisfies every preference statement in Λ. Then o and
o′ can have one of the possible relations according to Λ: either Λ |= o � o′; or
Λ |= o′ � o; or Λ �|= o � o′ and Λ �|= o � o′. The third case means there is not
enough information to prove either outcome is preferred.

Based on these definitions, two distinct ways for comparing outcomes are
proposed in [29]:

• Dominance queries: Asking if Λ |= o � o′ holds, which is referred to as o is
preferred to and dominates o′.

• Ordering queries: Asking if Λ �|= o′ � o holds, which is referred to as o is
preferred to o′.

Although ordering queries are weaker than dominance queries, they are still
sufficient in many applications, and will be used in this work. In particular, if an
outcome o is present such for all other outcomes o′ we have Λ �|= o′ � o, then we
say o is undominated or most preferred with respect to Λ.

All through this work, and for the sake of simplicity, only strict preferences �
are considered. Nevertheless, these semantics are shown to be extendable to weak
preferences � and indifference ∼ in both CP-Nets and CP-Theories.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 64PDF page: 64PDF page: 64PDF page: 64

52 Chapter 3. Transparent Decisions in Social Actors: Preferences

Embedding in BDI agents

To transform CP-Theories to a formalism that can be used with the Prolog-like
inferential systems as those used in AgentSpeak(L) agents, one should look at
what needs to be decided in the process of goal refinement. An agent may have
dynamically interconnected beliefs about the environment, but when it is deciding
on what is the most preferred approach to partially ground the variables of an
event or goal in the form of e.g !g(v1, ..., vn), only the parameters of that goal are
relevant to the decision. Theoretically, in this approach we do not have only one
CP-Theory, but each distinct goal/event has zero or more inferred CP-Theories
from the set of all preference statements.

In this work, the preferences of an agent are presented in a different notation
from that of CP-Nets and CP-Theories, but more similar to OCP-Theories in [66].

A conditional preference statement λ of the agent can be expressed in the form
of inferential rules such as:

G � G′ ← C

where G,G′ are either belief predicates in the form g(v1, ..., vn) and g(v′1, ..., v
′
n),

or triggering events in the form !g(v1, ..., vn) and !g(v′1, ..., v
′
n) (or any other type of

trigger, ?,+,−). Each vi and v′i can be either a (partially) ground term, a named
variable or an anonymous variable (underscore, “ ”), and C is an arbitrary logical
expression that activates the preference statement if it can be proven to be true
at the time of evaluation, which can include variables that appear on the left side
of the ←. The set of all preferences of an agent is referred to as Λ.

With this definition, for each predicate G with the form g(v1, ..., vn), we can
denote its set of variables (or features or attributes) as VG = {v1, ...vn}. To express
a preference statement u : x � x′[W] in this form, on a predicate G, assuming
GX ∈ VG is the variable of G corresponding to X, the set GU ⊆ VG is the set
of all variables corresponding to U , the set GW ⊆ VG is the set of all variables
corresponding to W and GT = VG − (GU ∪ {GX} ∪ GW), the statement can be
presented as G � G′ ← true, such that GX is written as x, G′

X is written as x′,
all the variables of GU and G′

U are written as their corresponding value in u, all
variables of GW and G′

W are written as anonymous variables (underscore) and all
the variables of GT and G′

T are replaced with named variables that have the same
name in both G and G′.

Showing that these two forms of statements are equal is intuitive. For instance,
given the statement of g(x, u, T,) � g(x′, u, T,) ← true and two (partially)
grounded terms g(t1, ..., t4) and g(t′1, ..., t

′
4), we can infer g(t1, ..., t4) � g(t′1, ..., t

′
4)

iff we have t1 = x, t′1 = x′ and t2 = t′2 = u and t3 = t′3 regardless of the values
of t4 and t′4. By using induction we can see that the same can be inferred for
any number or parameters that correspond to GU , GW , GT or with any other
rearrangement of the parameters.

Pure CP-Theory (and by extension CP-Net) statements can be expressed in
the form of G � G′ ← C where C = true, but, as BDI agents are designed to

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 65PDF page: 65PDF page: 65PDF page: 65

3.3. Method 53

act in dynamic environments with incomplete information and uncertainty, and
more often than not, a BDI agent has to react to changes in the environment
and failures; simply using static CP-Theory statements is not sufficient for a BDI
agent. This is addressed by the activation condition C of preference statements.
This condition can be any arbitrary Prolog-like expression over the belief base of
the agent. A preference statement is active if the context condition can be proven
from the belief base of the agent. Intuitively this means that the left side of the
rule holds true if the right side can be proven. This can drastically increase the
expressivity of the preference statements in dynamic environments.

Definition 3.4 (Active Preference Statement)
At any point in the life-cycle of agent with a belief base B and set of preference
statements Λ, a preference statement G � G′ ← C is active iff C is a logical
consequence of B.

The next example further explores these type of preferences, and is an ex-
tended version of what is presented in the original CP-net paper [29] to facilitate
comparison.

Example 3

Let us consider some preferences over the actions of our food ordering agent,
starting from some preferences over the meal: (R1) for the main course, meat is
preferred to fish if at an Italian restaurant; (R2) fish is preferred to meat if at a
French restaurant; (R3) if the main course is meat, then a fish soup is preferred to
vegetable soup; (R4) if the main course is fish, then a vegetable soup is preferred;
(R5) for drinks, red wine is preferred to any other type of drink if vegetable soup
is in the meal; likewise, (R6) white wine is preferred to any other drinks if fish
soup is in the meal.

While multiple preferences are defined over the meal, still they do not translate
directly to any of the events that the agent can handle. To fix this, we add a
simple but important (meta-)preference: (R7) in the event of ordering anything,
ordering something more preferred is also preferred to ordering something less
preferred.We define at this point a few preferences about the restaurant: (R8)
if the agent is already located at a restaurant, it is preferred to order at that
restaurant (i.e. not to move) compared to any other restaurant, regardless of
the meal; (R9) the combination of Italian restaurant with a meat main dish is
preferred to any other restaurant and main dish combination if the agent is not
already at another restaurant. The specification of these preferences can be seen
in listing 7. A more detailed and practical explanation of how these statements
are written as Prolog rules can be found in section 3.4.

We can draw as in Figure 3.2 the preferential relation graph associated to the
predicate meal/3 with respect to preferences in listing 7 and the beliefs in listing 6.
The graph clearly suggests that, in this context, meal(veg,fish,red) is the most

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 66PDF page: 66PDF page: 66PDF page: 66

54 Chapter 3. Transparent Decisions in Social Actors: Preferences

1 (R1) meal(S,meat,W) >> meal(S,fish,W) :- at(italian).

2 (R2) meal(S,fish,W) >> meal(S,meat,W) :- at(french).

3 (R3) meal(fish,meat,W) >> meal(veg,meat,W) :- true.

4 (R4) meal(veg,fish,W) >> meal(fish,fish,W) :- true.

5 (R5) meal(veg,M,red) >> meal(veg,M,_) :- true.

6 (R6) meal(fish,M,white) >> meal(fish,M,_) :- true.

7 (R7) !order(M1) >> !order(M2) :- M1 >> M2.

8 (R8) !go_order(L,_) >> !go_order(_,_) :- at(L).

9 (R9) !go_order(italian, meal(S,meat,W))

10 >> !go_eat(L,meal(S,_,W)) :- not at(L).

Listing 7: Preferences of Food-ordering agent

preferred (undominated) option. Note however that this graph would have been
different if the agent had the belief at(italian) instead of at(french).

Generalization

The preference statements in listing 7 have been chosen because they offer a good
representation of the possible uses of the proposed method, and can be easily
generalized. First of all, we observe that only R3 and R4 are pure CP-Theory
preferences. The statements R1, R2 are conditioned on beliefs that are external
with respect to the variables of the preference itself (in this case, the location of the
agent). This type of conditional statements result in multiple preferential relations
that may also be contradictory. For instance, if both conditions at(french) and
at(italian) were true at any time, then the two preferences would be contradictory
and the preference relations concerning meal/3 would be unsatisfiable.

The statements R5 and R6 specify preferences that, although simple, can not
be expressed in standard CP-Theories, as they give conditional preference to a
value of a variable (drinks) over any other value of that variable (erga omnes
preference); this can be very useful in cases where the domain of values of a
variable are unknown at design time, but the designer is aware of a few values
that are always either desired or to be avoided.

As it was already observed, R7 is a meta-preference. The condition of this
statement does not consult the belief-base of the agent, but rather the preferences
of the agent. It works as a mapping of a preference expressed as object level to
a preference expressed as action level. In general, any preference over objects
is implicitly referring to a certain domain of activities, and it is as such only a
more compact representation. Preferences as R7 are needed to make explicit this
connection. The technical aspects of this step will be explained more in detail in
section 3.4.

The statement R8 is conditional over a belief that the agent may have (at(L)),
and also connects the variable of this condition L (that will be grounded at
run-time) to the preference relation itself, creating an interesting parameterized

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 67PDF page: 67PDF page: 67PDF page: 67

3.3. Method 55

preference structure capturing in this case “I prefer the place I am already at”.
Finally, also R9 presents a statement that can not be expressed in CP-Theories,

in which two different variables are part of the preference. This can be useful
tool but also can easily lead to cyclic preferences, thus, this type of preference
statement should be used with care.

Figure 3.2: Preference Structure of the Agent over meal/3

3.3.4 Goal Refinement via Preferences

The integration of preferences into the BDI reasoning cycle can be implemented
as a unifier ordering step prior the plan selection, that only applies when the
triggering event contains unbounded variables. To achieve this, when the agent
selects a partially unbounded event ε, first it needs to find all the relevant unifiers
by consulting the plan library, and then find all the applicable unifiers by consulting
the belief base. Afterwards, the agent can create a partial ordering between the
applicable unifiers.

To extend the definition of section 3.3.3 to unifiers, assuming ε is a partially
unbound event and (σδ), (σδ)′ are two applicable unifiers for ε, we say (σδ) � (σδ)′

satisfies a preference statement G � G′ ← C if ε(σδ) can be unified with G and
ε(σδ)′ can be unified with G′. Given Λ, a set of acyclic preference statements in this

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 68PDF page: 68PDF page: 68PDF page: 68

56 Chapter 3. Transparent Decisions in Social Actors: Preferences

form, then we say Λ |= (σδ) � (σδ)′ iff (σδ) � (σδ)′ satisfies every active preference
statement in Λ. We can then say (σδ) is preferred to (σδ)′ iff Λ �|= (σδ)′ � (σδ).
An then we can define the undominated or most preferred unifier:

Definition 3.5 (Most preferred unifier)
A unifier (σδ) is referred to as an undominated or most preferred unifier for an
event ε iff σδ is an applicable unifier for ε and for every other applicable unifier
(σδ)′ we have Λ �|= (σδ)′ � (σδ).

Surprisingly, with this definition, finding the most preferred unifier is simple
in a Prolog program as it matches well with how Prolog engines work. Normally
in a Prolog program it is not easy to query if a fact holds with respect to every
rule concerning that fact, but if a query about a fact fails, this means that all the
rules about that fact have failed i.e, that the fact can not be proven. Thus, to
find if a unifer (σδ) is the most preferred one for an event ε, it is enough to ask if
for every other unifier (σδ)′, the query (σδ)′ � (σδ) fails. Intuitively, running this
query for every unifier of ε will result in finding the most preferred unifier. More
details on the implementation of this algorithm is presented in section 3.4.

For simplicity, it is assumed that the agent uses the plan selection function
typical in BDI frameworks, i.e. selecting the first applicable unifier for each
event. This assumption means that the agent always uses an undominated or
most preferred unifier to ground the variables of a (partially) abstract goal if this
unifier exists, or reverts to the default behavior of selecting the first applicable
unifier in case of inconsistencies with preferences that may result in situations
that no unifier is the most preferred.

Example 4

Consider again the agent script given in example 1, with the beliefs of example
2, and with the preferences of example 3. Assume that this agent receives an
abstract event !go_order(L,M). Then, as in example 2, two applicable unifiers
will be created. P1 will be applicable with the unifier {Loc/italian, Meal/M}

and P2 with the unifier {Loc/french, Meal/M}. Because the agent has the belief
at(french), we can see that the relation:

!go_order(italian,M) >> !go_order(french,M)

can not be proven from the preferences (R8 and R9 can not conclude it) but the
relation:

!go_order(french,M) >> !go_order(italian,M)

can be proven to be true (based on R8), so the {Loc/french, Meal/M} is the single
most preferred unifier and P2 will be selected as this is the only plan applicable
with this unifier. Next, when the sub-goal !order(Meal) is being considered, there

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 69PDF page: 69PDF page: 69PDF page: 69

3.3. Method 57

are 8 applicable unifiers for plan P3, assuming the at(french) belief still stands,
and based on the given preference rules, the ordering in Fig. 3.2 will apply, and
then the most preferred unifier will be {S/veg, M/fish, W/red}. This means that
the abstract goal will be refined to !order(meal(veg,fish,red)) and consequently
plan selection will instantiate the plan associated to it (P3).

Example 5

To show how partially abstract goals would be grounded with this method, consider
the same agent as before with the same set of preferences and beliefs, except
this time the agent has the belief at(home) instead of at(french), and the agent
receives an event with ordering a meal with meat as the main course:

!go_order(L,meal(S,meat,W)).

This time plan P2 will be applicable with two unifiers:

{Loc/italian, Meal/meal(S,meat,W)}

{Loc/french, Meal/meal(S,meat,W)}

because the agent has the belief at(home), the statement R8 is not active for
any of the unifiers and based on the the statement R9, the Italian restaurant is
preferred to any other restaurant as long as there is meat main course, so again
while the relation:

!go_order(italian,meal(S,meat,W)) >> !go_order(french,meal(S,meat,W))

can be proven (based on R9), but the relation:

!go_order(french,meal(S,meat,W)) >> !go_order(italian,meal(S,meat,W))

can not be proven from the preference statements (R8 and R9 can not conclude
it), so the first unifier will be the most preferred one and then P2 is selected
with it. Next, assuming the move_to action works correctly, the belief at(home)
will be retracted, at(italian) will be added to the belief-base, and the sub-
goal !order(meal(S,meat,W)) will be adopted. At this point (see the example in
[29]), based on the preference statements and agent’s beliefs, the most preferred
unifier will be {S/fish, M/meat, W/white}, meaning the goal will be refined to
!order(meal(fish,meat,white)), and then the plan for this goal (P3) will be
instantiated by the plan selection.

An interesting point in this example is the interaction between preference
statements R1 and R9. In normal CP-Nets, these two statements makes the
network cyclic: the preference over main dish is dependent on the location (R1),
and the preference over the location depends on the main dish (R9). But in this
work such preferences can be defined for two reasons: (1) framing, meaning the two
preferences, although being about the same variables, are defined in two different

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 70PDF page: 70PDF page: 70PDF page: 70

58 Chapter 3. Transparent Decisions in Social Actors: Preferences

frames of choice, and (2) context, meaning that as the agent resides and acts in a
dynamic environment, it perceives changes and modifies its beliefs, which in turn
modifies the agent’s preferences, e.g. while the agent has the belief at(home), R1
and R2 are not active and so they are not part of unifier selection process.

3.4 Implementation

This section presents a practical implementation of the transformation method
from CP-Theory logic to Prolog logic proposed in section 3.3.3.

Preference operator

First, we need to express a preference statement G1 � G2 ← C, where G1, G2
are partially grounded terms with the same functor and arity. The mapping from
CP-Theory statements to this statement is presented in section 3.3.3. This binary
operator � will be introduced both into the syntax of the agent programming
language and as a binary predicate into the belief base of the agent. In the syntax,
the operator � will be denoted as >> making a relation such as G1 � G2 to
be written as G1 >> G2. To write full contextually conditioned statements as
G1 � G2 ← C, we can utilize the Prolog inference rules. The former preference
statement can then be written as G1 >> G2 :- C.

Applicability

Next, as the method is implemented by utilizing the belief-base of the agent, a
modification is needed to allow preference statements about different types of
goals to be part of the belief base, as e.g. in the R8 statement from listing 7. To
do this, a supplementary predicate applicable/2 is introduced. When a preference
statement G1 � G2 ← C is defined where G1 and G2 are triggering events e.g.
achievement goal (!G), test goal (?G), the preference statement is transformed at
compile/interpretation time to:

applicable(t, G1) � applicable(t, G2) ← C

where t is a predefined atom describing the type of the event, e.g: the preference
statement R8 in listing 7 will be rewritten as:

applicable(achievement,go_order(L,_))

>> applicable(achievement,go_order(_,_))

:- at(L).

As this is a normal Prolog rule, it can be simply added to the belief base of the
agent. Then, preference relations can be queried from any context, as e.g. the
(meta-)preference R7 in listing 7, in which a preference relation is used as the
condition of another preference, or, more importantly, to exploit Prolog queries to
find the most preferred unifier for abstract events.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 71PDF page: 71PDF page: 71PDF page: 71

3.4. Implementation 59

Optimality

Next, the algorithm should be implemented for finding an optimal outcome, that
is, the most preferred unifier(s) for a partially abstract term. The algorithms
originally introduced for CP-Nets and CP-Theories generate an optimal outcome
by sweeping through the network from top to bottom (i.e., from ancestors to
descendants) setting each variable to its most preferred value given the instantiation
of its parents. While these algorithms are efficient and intuitive, they are not
applicable for the transformed Prolog-like rules. Unlike CP-Nets and CP-Theories,
the preferential structure of an agent is not static because of the presence of extra-
contextual conditions; also, with the new form of statements, the parent-child
relation of the variables is not explicit anymore. For these reasons, new algorithms
are needed that do not rely on the hierarchy of the variables but instead utilize
the backtracking feature of Prolog.

Looking at the definition 3.5, given a set of preference statements as Prolog
rules in a belief base B, to prove that a unifier (σδ) is the most preferred unifier for
a partially unbound term (or event) ε, it is sufficient to prove that for every other
unifier (σδ)′ of that term, the relation ε(σδ)′ � ε(σδ) is not a logical consequence
of B. Intuitively with the semantics of Prolog, this means that this relation
could not be concluded from any of the preference statements of B. With this, a
simple algorithm that can find the most preferred (or undominated) unifier(s) for
a partially unbound term is a backtracking search that goes through every possible
(partial) grounding of that term to find one where there is no other (partial)
grounding of that term which is more preferred to it. Such algorithm can be
implemented by adding the Prolog rule presented in Listing 8 to the agent’s belief
base. The copy_term/2 is a standard predicate in many Prolog implementations
that unifies G2 with a copy of G in which all variables are replaced by new variables.

1 most_preferred(G) :-

2 copy_term(G, G2), G,

3 forall((G2, (G2 >> G) -> fail; true)).

Listing 8: CP-Net reasoning algorithm implemented in Prolog

When this rule is queried with a partially unbound term G, first a copy of G
is created as G2, then the term G itself is called, starting a backtracking search
over all possible groundings of G, and then forall/2 predicate starts a nested loop
over all groundings of G2 and fails if it can find a grounding of G2 that (G2 >> G),
otherwise if no such G2 is found it returns true meaning the current grounding of
G is the most preferred one. Also with how prolog queries work, if there is more
than one most preferred (undominated) grounding, asking for more answers will
return them.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 72PDF page: 72PDF page: 72PDF page: 72

60 Chapter 3. Transparent Decisions in Social Actors: Preferences

There is one final rule needed to make this algorithm work which should be
added to the belief base of the agent: T >> T :- !,fail. which defines that a
term can not be preferred to itself. With these rules added to the belief base,
given a partially unbound term, we can run queries to find the most preferred
unifier for that term. If we consider the example agent, querying the belief base
with the term most_preferred(meal(S,M,W)) will give the result in one answer
with the unifier {S/veg, M/fish, W/red}.

Embedding in the decision-making cycle

Now that the belief base can answer queries about the most preferred unifier for a
term, the next step is to allow the agent’s reasoning engine to ask queries about
the most preferred unifier for an event. To do this, the applicable/2 predicate
that was defined before is used again. At compile/interpretation time, for each
plan of the form e : C ⇒ H a Prolog rule is added to the belief base of the agent
in the form of:

applicable(t, G) ← C

where t is an atom that represents the type of the event e and G is the term
associated with e. As an example, the rule for plan P1 is:

applicable(achievement,go_eat(L,M)) :-

restaurant(L) & not at(L)

Intuitively, at any moment in run-time, by querying this predicate, we can
retrieve all possible applicable groundings of an event that can be concluded
from the plan library and the belief base. For instance, by querying the term
applicable(achievement,go_eat(L,M)) on the belief base of an agent with the
beliefs, plans and preferences described in section 3.3, the agent obtains two
answers: {L/italian, M/M} and {L/french, M/M}. Then, by using this predicate
with combination of most_preferred/2, the agent can find the most preferred
applicable unifier for an event. This is possible because the preference statements
about events were already transformed with the applicable predicate. Considering
our running example, by querying the term

most_preferred(applicable(achievement,go_eat(L,M)))

only one answer {L/french, M/M} will be returned. Now to embed the goal
refinement step into the agent reasoning cycle. After the event selection step,
if the selected event ε contains free variables, then the most preferred unifier(s)
should be found for this event by querying the belief base of the agent with the
aforementioned method, and the resulting answer(s) are sent to the plan selection
function.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 73PDF page: 73PDF page: 73PDF page: 73

3.5. Discussion and Conclusion 61

Complexity

The core of the method is the rule for the predicate most_preferred/1, and this
rule has two nested backtracking loops over the possible groundings of the input
term. In the worst case scenario, each two groundings of a term should be queried
with all of the preference statements associated to that rule. Then, for a term
T , if the there are n number of possible groundings at any time, and there are m
preference statements over T , then, in the worst case scenario, the time complexity
of finding the most preferred unifier will be n2 ×m.

3.5 Discussion and Conclusion

This chapter contributes to recent efforts to integrate preferences into BDI agents.
Despite the ‘D’ in the acronym, desires play a limited role in contemporary BDI
agent platforms, as they are generally conflated to goals (procedural or declarative).
This chapter showed that by interacting adequately with the belief base and plan
library of the agent, abstract goals can be refined taking into considerations the
agent’s preferences. Stated differently, preferences act here as background desires
modifying/impacting goals, playing the role in turn of contingent desires. (Note
that in general the literature suggests that preferences are derived from desires
[113]; for our purposes, however, we discovered that the two can be seen as filling
the same functional niche.)

Although this work illustrated the use of preferences focusing on a single agent
and on goal refinement, preference statements can be relevant in other contexts
too. For instance, MAS frameworks allow agents to communicate and transmit
their beliefs to each other. Leveraging the present proposal, because preference
statements are implemented as beliefs, agents can directly communicate their
preferences to other agents. This can be very useful e.g. in social simulation
or social learning contexts, where the agents may need to decide to act (or not
to act) depending on both their own and other agents’ preferences. Another
interesting use-case for this approach could be the implementation of normative
agents, utilizing preference both to capture personal and societal norms (see the
use of CP-nets for deontic logic in [112]).

Preference statements introduced in this work are in a form processable in
Prolog logic programs. We have shown that a subset of this form can be used to
express pure CP-Theory preferences. However, this new form can also be used
to express contextually conditioned and parameterized preferences, resulting in
much more flexibility than pure CP-Theories. Consider for instance the statement
R8 in example 3: “I prefer the place I am already at”; that depends completely
on the state of the agent in the environment and, if the environment is unknown
and unpredictable, so will be the preference statement. Also, unlike CP-Theories
that are fully qualitative, with the proposed form quantitative preferences can

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 74PDF page: 74PDF page: 74PDF page: 74

62 Chapter 3. Transparent Decisions in Social Actors: Preferences

be expressed by using arbitrary arithmetic equations in the context condition
of preferences; e.g: consider a statement “I prefer a cheaper restaurant to a
more expensive one” that can easily be expressed in this form with an arithmetic
comparison as the condition of the statement. But this flexibility comes at the
cost of static verifiability. Many of the preferences that can be expressed in
the proposed representational model cannot be statically verified or predicted
easily prior to run-time. The redeeming aspect of this problem is that static
verification of dynamic agents is well-known to be a challenging task, especially in
dynamic environments [79, 77]. This explains the existence of run-time verification
approaches for agent programming frameworks, and probably the most notable
works that adopt a (semi-)formal run-time model checking approach to verification
are those of the AJPF/MCAPL framework [63, 62]. These approaches are in
principle also usable for agents that are enhanced with preferences.

Finally, one of the main requirement behind this work is accessible usability.
The transformation method from CP-Theory preference statements to Prolog-like
programs has been conceived to enable its use almost directly with AgentSpeak(L)-
like frameworks [26, 65, 126, 5]. Indeed, no extra reasoning component is intro-
duced, all the preference reasoning and algorithms required for goal refinement
is done through beliefs and inferential rules. Furthermore, unlike many of the
works that embed preferences into BDI frameworks, e.g. [161, 162, 53, 122, 123],
this approach does not require any extra annotation of the agent’s script with
information about effects of plans or actions and thus makes it more accessible for
the designer.

A concrete Prolog implementation of ordering queries of CP-Nets/CP-Theories
was presented, and a working proof of concept for this approach is publicly available
as part of AgentScript2. Analyzing its complexity, we showed that the proposed
algorithm run in polynomial time. Such worst-case scenario could be however
reduced by optimizing the relative positions of preferential rules and groundings
in the belief base, for instance by exploiting statistical information concerning
their applicability or relevance for the decision-making cycle.

2https://github.com/mostafamohajeri/agentscript

https://github.com/mostafamohajeri/agentscript

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 75PDF page: 75PDF page: 75PDF page: 75

Chapter 4

Interoperability and Automated Tests:
DevOps

Previous chapters introduced different tools and approaches for modelling agents
in norm-governed cyber-infrastructures, however, what typically holds such ap-
proaches back for real world applications is usability and adoptability for designers
and modellers. Development solutions, such as testing and integration, undeniably
play a central role in the daily practice of software engineering, and this explains
why better and more efficient libraries and services are continuously made available
to developers and designers. Could the MAS developers community similarly
benefit from utilizing state-of-the-art testing approaches? The chapter investigates
the possibility of bringing modern software testing and integration tools as those
used in mainstream software engineering into multi-agent systems engineering.
Our contribution explores and illustrates, by means of a concrete example, the
possible interactions between the agent-based programming framework ASC2
(AgentScript Cross-Compiler) and various testing approaches (unit/agent testing,
integration/system testing, continuous integration) and elaborate on how the
design choices of ASC2 enable these interactions.1

4.1 Introduction

Software testing is attracting increased interest in industry [1] and it is one of the
most used methods of software verification. One of the reasons of this success lies
in the advancement and popularization in the software engineering community
of methodologies commonly known as DevOps, in particular of techniques of
automated testing in continuous integration (CI). Generally, CI refers to the
facilitation provided by third-party tools for automating the build/test process of

1The material presented in this chapter refines and extends elements presented in [125].

63

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 76PDF page: 76PDF page: 76PDF page: 76

64 Chapter 4. Interoperability and Automated Tests: DevOps

a software. In recent years, online DevOps services such as TravisCI2 and CircleCI3

have been increasingly used by software engineers to improve the efficiency of
their testing process, a practice which plausibly resulted in increased quality of
the developed software.

Very recently, Fisher et al. [79] have suggested that testing approaches would
be an important complement to formal approaches to MAS verification, if they
could be automated and integrated in a seamless way into MAS development.
In our view, seamless integration does not mean only that agent programmers
are able to use the vast amount of software testing tools available to mainstream
languages like Java or Python, but, more importantly, that they are also able to
use (almost) language- and framework- agnostic online services as those used for
CI. This chapter explores this idea, aiming to illustrate what the MAS community
could gain by using industry standard testing tools and discussing what would
be the theoretical and practical trade-offs for this choice. We investigate possible
interactions of testing with agent-based programming, and its relation with other
verification techniques. More concretely, we demonstrate various approaches to
enhance the productivity of MAS development cycle in the ASC2 framework via
mainstream software testing and integration tools, and elaborate on the design
choices of ASC2 that affect the testability of agent-programs with the mentioned
tools. Then, we explore on how this approach can be generalized for other MAS
frameworks.

The motivation for this chapter arises from research conducted on data-sharing
infrastructures (e.g. data marketplaces). At functional level, a data-sharing appli-
cation corresponds to a coordination of several computational actors distributed
over multi-domain networks. Those actors generally include certifiers, auditors,
and other actors having monitoring and enforcement roles, ensuring some level
of security and trustworthiness on data processing [174]. Typically distributed
across several jurisdictions, networks may be subjected to distinct norms and
policies, to be added to various infrastructural policies provided at domain level
and ad-hoc policies set up by the users. Some of these norms, as for instance
the GDPR, bind processing to conditions and specific purposes, but, more in
general, all compliance checking on social systems requires to know and to infer
(in case of a failure on expectations) why an actor is performing certain operations.
Agent-based programming, and particularly the Belief-Desire-Intention (BDI)
model, by looking at computational agents as intentional agents, provides the
“purpose” level of abstraction available by design, and for this reason it is a natural
technological candidate for this application domain.

The BDI model been extensively investigated as basis to represent compu-
tational agents that exhibit rational behaviour [96]. Recent works as e.g. [105]
investigated various issues holding when mapping logic-oriented agent-based pro-

2https://travis-ci.com/
3https://circleci.com/

https://travis-ci.com/
https://circleci.com/

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 77PDF page: 77PDF page: 77PDF page: 77

4.2. Verification of (Multi-)Agent Systems 65

grams into an operational setting. In contrast, this chapter focuses instead on the
development practice aspect: as soon as we attempted to program data-sharing
applications as agents, we experienced the lack of mature software engineering
toolboxes, thus hindering a continuous integration with the infrastructural-level
components developed in parallel by our colleagues.

The document proceeds as follows: section 4.2 provides a background and
related works on verification of MAS, in section 4.3 we introduce our approach on
MAS testing in ASC2 framework with mainstream tools. An illustrative example
of this approach is presented in section 4.4. Finally, section 4.5 provides the
discussion and comments on possible extensions and future developments.

4.2 Verification of (Multi-)Agent Systems

Verification is a crucial phase in any software (and system) development process,
and as such it has been addressed also by the Multi-Agent Systems (MAS)
community. The survey presented in [8] provides an empirical review of over 230
works related to verification of MAS.

At higher level, approaches for the verification of autonomous systems fall into
five categories [79]: (a) model checking, (b) theorem proving, (c) static analysis, (d)
run-time verification, and (e) (systematic) testing. While the first four approaches
(a-d) are considered formal or at least semi-formal, testing (e) is deemed to be
an informal approach to verification. Further, MAS verification can be targeted
at different levels, varying from fine-grained verification of agents at a logical
level [11] to verification of emergent properties in a system [56]. Ferber et al
[76] identifies three levels: (i) Agent level considers internal mechanisms and
reasoning of an agent (ii) Group level consists in testing coordination mechanisms
and interaction protocols of agents, and (iii) Society level checks for emergent
properties or if certain rules and/or norms are complied within the society. In
general, the choice of a verification method depends on the required level of
verification, as e.g. formal methods may not be applicable for the verification of a
large MAS with non-deterministic characteristics at the society level.

Most of the works on MAS verification point out that testing agent programs is
far harder than testing normal software, on the grounds that agents tend to have
more complex behaviors, and deal with highly dynamic and often non-deterministic
environments (including other agents), on which they have only partial control
[129]. A series of recent empirical results [168, 167] was used to conclude that,
with respect to certain distinct test criteria, testing BDI agents can be practically
infeasible. The all-paths criterion requires the test suite to cover all the paths
of the agent’s goal-plan graph; its application shows that the number of tests
needed to run is intractable [168]. In subsequent work, the same authors study
the minimal criterion of all-edges, requiring all edges of the goal-plan graph to be
covered. While not per se infeasible, results show that even this criterion requires

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 78PDF page: 78PDF page: 78PDF page: 78

66 Chapter 4. Interoperability and Automated Tests: DevOps

a (too) high number of tests [167].
These observations can explain why much of the work in verification of au-

tonomous systems and specifically of BDI agents have been towards the formal
verification of agent programs, a mathematical process for proving that the system
under verification matches the specification given in formal logic [24]. One of
the most successful formal methods for verification of software agents has been
model checking [41]. Model checking of BDI agents can be done as e.g. in [25] by
translating a simplified version of AgentSpeak(L) to Java programs and using the
Java Path Finder (JPF) verification tool. Probably the most notable works that
adopt a (semi-)formal model checking approach are those of the AJPF/MCAPL
framework [62, 77]; AJPF/MCAPL also relies on JPF to perform program model
checking on agent programs developed in multiple JVM-based BDI frameworks
by utilizing an implementation of the target language’s interpreter. Nevertheless,
although formal verification techniques as model-checking provide a high level of
guarantee, they are typically both complex and slow to deploy [169].

A number of approaches to testing (that is, informal verification) have also
been considered in the MAS literature. Some of those utilize model-based testing
[137, 172] and rely on design artifacts such as Prometheus design diagrams [132]
to generate tests and automate the testing process. Others consider a more
fine-grained approach to verify intentional agents [73, 131], focusing on white box
tests involving in the testing process the inner mechanisms of BDI agents (like
plans and goals). This method of testing has however been criticized in [108]
as being “too fine-grained”, proposing instead to perform testing at a module
level, that is, considering a set of goals, plans, and/or rules as a single unit. Still
other works refer to software testing techniques applied on MAS development,
focusing on testing agents and their interaction patterns as the main level of
abstraction [45, 106]. At implementation level, such unit testing is performed in a
Jade multi-agent system via the JUnit library. The distinct agent-roles that are
present in the MAS are tested by means of mock agents that communicate with
the implemented Jade agents to verify their behavior.

Levels of Testing

Software testing is generally categorized in four levels or activities: (a) Unit testing
is done to verify different individual components of the software system in focus,
(b) Integration testing verifies the combination of different components together,
(c) System testing is done to test the system as a whole, and (d) Acceptance testing
is done to check the compliance of the software with given end-users’ and/or
relevant stakeholders’ requirements.

A categorization for MAS testing from a development-phase activity perspective
has been proposed in [127], consisting of five levels: (i) Unit testing targets
individual components of an agent, (ii) Agent testing aims at the combination of
the components in an agent including capabilities like sensing its environment,

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 79PDF page: 79PDF page: 79PDF page: 79

4.3. Approach 67

(iii) Integration or Group testing includes the communications protocols and the
interactions of the agent with its environment or other agents, (iv) System or
Society testing considers the expected emergent properties of the system as a
whole (v) Acceptance testing for a MAS stays the same as their counterpart in
software testing.

All these categorizations can be seen as guidelines to draw a conceptual line
between what should be tested for what purpose and when, in the different phases
of software development. This means that for each project it is up to the designer
to decide e.g. what counts as units, what interactions are considered group and
what are the properties of the system/society. Indeed, testing libraries like JUnit
or online continuous integration services like TravisCI or CircleCI stay relatively
agnostic on what type of tests are being done. We will follow here the same
principle by allowing the designer to create each test suite with different scenarios
containing one or multiple agents with varying types and allowing for flexible
success/failure criteria.

Coverage

An important measure giving insights on the quality of a certain test suite in
a given system is coverage. Software engineering proposes different criteria for
coverage [128], varying from simple line coverage (denoting the percentage of the
code that is covered by the test cases), to more sophisticated metrics like cyclomatic
complexity [117], more commonly known as branch coverage. Intuitively, the more
a program is covered by a test suite the more confident the designer can be about
the behavior of the software. In fact it is a common approach to set a minimum
coverage boundary for software projects and if coverage is below this limit the
build chain is considered a failure even if the code compiles correctly.

Several works have studied criteria for testing in Agent-Oriented Software
Engineering, and particularly in BDI-based agent programming [131]. However,
the abstract mechanisms underlying any BDI-based reasoning cycle concerning
e.g. treatment of plan context conditions, plan selection and failure handling,
alongside the procedural specifications given in one agent’s script (e.g. the agent’s
plans), result in complicated branching in the agent’s effective code, a fact that
makes defining what is actually covered by a test suite difficult [168, 167].

4.3 Approach

Instead of investigating dedicated tools for testing BDI agents, our motivation
is to study under what conditions and how we can take advantage of existing
software testing coverage tools, so as to enable an integration of BDI agent-
based development with other types of development, occurring concurrently on a
production-level system. This practical (and unavoidable) necessity motivated us

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 80PDF page: 80PDF page: 80PDF page: 80

68 Chapter 4. Interoperability and Automated Tests: DevOps

Figure 4.1: Compile/Test process of an ASC2 program with sbt

to overlook or put aside the warnings and issues indicated in the literature.

4.3.1 Testing Approach

In a typical unit or integration test of a computational entity under test (e.g. a
class, a web service), the designer sets up an initial setting (e.g. one or multiple
object instances, web services, a client), and then, based on certain invocations
(e.g. function calls, access/service requests), a set of assertions are checked to
verify the internal state, or some observable behavior of the tested entity, or its
effect on the environment (e.g. function results, service responses, modifications
of other entities).

Internal attributes (of objects or services) are generally harder to access and
therefore to verify. Best practices of Test-Driven Development (TDD) address
this issue by means of Dependency Injection (DI): the dependencies of each entity
should be instantiated from outside the entity and then passed to it e.g. as
parameters (typically to the class constructor in object-oriented programming).
This allows the tester to isolate and observe the internal mechanisms of the entity
under test by using “mocked” dependencies. To enhance testability, multiple
components of ASC2 agents, including their belief base and communications layer,
are injected as external dependencies.

In any certain situation, we can look at a single agent or multiple agents
(a MAS) as a computational entity under test, and this entity has also a set
of internal attributes, observable behavior, and possible interactions with its
environment. The single agent or multiple agents under test can be instantiated
from one or more scripts. The setting could include any other types of entities
e.g. other possibly mocked agents, external objects, etc. The initial state of the
agent(s) and of the other related entities defines the initial setting of the test, the
invocation/probing action of a test suite is typically a series of messages sent to
the agents. The expected effect(s), behavior(s) or state(s) of an entity rely heavily
on the entity under test. For a small system including one or only a few agents,
each message or the beliefs of the agent(s) may be needed to be verified, whereas
in a complex system, the designer may only need to verify emergent pattern in
the interactions of the agents or major shifts in the state of the system.

In our approach, we aim to allow the designer to utilize any off-the-shelf testing

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 81PDF page: 81PDF page: 81PDF page: 81

4.3. Approach 69

1 +!init(W) : W > 1 =>

2 Nbr = "worker" +

3 ((#name.replaceAll("worker","").toInt mod W) + 1);

4 +neighbor(Nbr).

5

6 +!token(0) =>

7 #coms.achieve("master", done).

8

9 +!token(N) : neighbor(Nbr) =>

10 #coms.achieve(Nbr, token(N - 1)).

Listing 9: Token ring worker script in AgentScript DSL

tool (library, service, etc.) directly into their development chain, even more so to
enable the designer to test their program via any standard build chain. In the
case of the ASC2 framework, its current implementation is based on Scala, and
we considered as target build tool sbt4, which enables us to also use JVM/Scala
testing libraries like JUnit or ScalaTest. We have then developed a sbt plugin5

that —as part of the compile task—iterates over the scripts written in AgentScript
DSL in the project sources and uses the AgentScript Translator to generate Scala
implementations of the agents. Code generation is a standard part of build tools
like sbt or maven, therefore, the generated sources are also managed by the build
tool and are immediately available to rest of the project. The general overview of
the Compile/Test cycle of an agent-based system developed via ASC2 and built
by sbt is presented in figure 4.1. Note that this process is fully automated by sbt.

A MAS of this type can be started in two ways. After bootstrapping it as an
empty instance of the MAS infrastructure, the designer can either use configuration
files (e.g. JSON) to specify the agents of the system or alternatively, use lower-level
code (e.g. Scala/Java) to manually spawn agents via their respective class in the
generated code. In this work, we preferred the latter approach, as it provides
better control over the test scenarios.

To complete our Compile/Test process, in addition to the ScalaTest library,
we also used the Akka Testing library: at run-time, ASC2 agents are essentially
Akka actor micro-systems and this library provides many convenient tools for
testing actors. Both libraries are used out of the box and no modifications have
been done to adapt them to the framework. With this configuration, each scenario
to be verified can the written as a test suite in ScalaTest to test whether one or
multiple agents behave as expected.

4https://scala-sbt.org/
5https://github.com/mostafamohajeri/sbt-scriptcc

https://scala-sbt.org/
https://github.com/mostafamohajeri/sbt-scriptcc

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

70 Chapter 4. Interoperability and Automated Tests: DevOps

4.4 Illustrative Example

To illustrate an application of our testing approach we consider a MAS constructed
around a Token Ring system, commonly used in both distributed systems and
MAS [126, 36]. This system consists of one master agent and W worker agents;
at the start of the program the master sends an init(W) message to all worker
agents to inform them of the total number of the workers in the ring, each worker
upon receiving this message finds its neighbor, forming a closed ring. Then, T
tokens are distributed among the workers, each token has to be passed N times
in the ring formed by workers. When all T tokens have been passed N times and
this was reported to the master, the program ends.

4.4.1 Unit/Agent Testing

We will focus in particular on the script of the worker agents shown in listing 9.
We perform the tests taking the standpoint of a whitebox test engineer, meaning
that we test the script of the agent knowing its internal workings; nevertheless,
the tests are still performed externally, we do not modify the script in order to
test it6.

Testing Successful Scenarios

By viewing the script in listing 9, we can see that the agent has a total of 3 plans
for 2 separate goals. Theoretically, we need at least 3 tests to cover the successful
execution of all the plans. However, while the success criteria for plans is simple
(completion of execution), achievements of goals can be more complicated and the
testing framework needs to provide the flexibility to define them. The success
criteria for the init(W) and token(N) goals are quite different. In the latter the
expected behaviour in both plans is an observable event, i.e. a certain achieve

message sent by the agent to another specific agent. In the former case there is
no observable behavior and the success criterion is a specific update of the agent’s
belief base.

The test specification we used for the worker agent can be seen in listing 10. In
line 3 an empty MAS object is created. The criterion of success for init(W) plan
depends on the agent’s beliefs, therefore we need to be able to verify the internal
state of agent’s belief base. First we create an instance of BeliefBase class (line
4) and when the agent under test (worker1) is being instantiated (line 10), this
object is injected in the agent as its belief base; with this approach at any point
in the tests we can simply access the agent’s beliefs to query them for verification
purposes or even modify the agent’s belief base for setting up test scenario states.

Only one agent (worker1) is under test and the other agents present in the
suite can be mocked. As ASC2 agents are actor micro-systems, an agent can be

6https://github.com/mostafamohajeri/agentscript-test

https://github.com/mostafamohajeri/agentscript-test

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 83PDF page: 83PDF page: 83PDF page: 83

4.4. Illustrative Example 71

1 class TokenRingWorkerSpec extends ... {

2

3 val mas = new MAS()

4 val verifiableBB = new BeliefBase()

5 val mockedMaster = testKit.createTestProbe[IMessage]()

6 val mockedNeighbor = testKit.createTestProbe[IMessage]()

7 val worker

8

9 override def beforeAll(): Unit = {

10 mas.registerAgent(new worker(bb = verifiableBB), name = "worker1")

11 mas.registerAgent(mockedMaster, name = "master")

12 mas.registerAgent(mockedNeighbor, name = "worker2")

13 worker = mas.getAgent("worker1")

14 }

15

16 "A worker agent" should {

17 "have its neighbor in its belief base after `!init(N)`" in {

18 worker.event(achieve,"init(50)").send()

19 mockedMaster.expect(GoalAchievedMessage())

20 assert(verifiableBB.query("neighbor(worker2)") == true)

21 }

22

23 "send a `!done` to master on `!token(0)`" in {

24 worker.event(achieve,"token(0)").send()

25 mockedMaster.expect(event(achieve,"done").source(worker))

26 }

27

28 "send a `!token(N-1)` to its neighbor on `!token(N)`" in {

29 worker.event(achieve,"token(10)").send()

30 mockedNeighbor.expect(event(achieve,"token(9)").source(worker))

31 }

32 }

33 }

Listing 10: Test suite for the worker agent

mocked by a single actor. In lines 5 and 6, two probe actors are created to be the
stand-ins for the master agent and (worker1)’s neighbor in the tests and they are
then registered to the system (lines 11 and 12). This type of mocking gives us the
ability to verify all the interactions that the agent under test may have had with
these probe actors.

The rest of the test suite contains 3 tests, in the first test in line 18 a goal
event init(50) is sent to the worker1 agent and it is expected that after this
goal is achieved (line 19), the belief base of the agent contains the belief defined

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 84PDF page: 84PDF page: 84PDF page: 84

72 Chapter 4. Interoperability and Automated Tests: DevOps

by the term neighbor(worker2) which is verified in line 20. In the next test, a
goal message token(0) is sent to the agent (line 24) and then it is verified that
the agent sends a done message to the master (line 25). The final test follows the
same pattern by sending a goal message token(10) (line 30) and the verification
includes a token(10-1) message to its neighbor (line 30). Note that in all the
tests, the messages sent to the worker1 agent do not specify any source, this is
because in the script in listing 9, the source of the messages is not checked meaning
it is not necessary to specify the source. As these tests are written in a standard
testing library, build tools such as sbt can execute them in their build chain. By
running the tests in the sbt shell we are able to see the output presented in listing
11 that indicates our program has passed this test.

[info] A worker agent should

[info] - have its neighbor in its belief base after `!init(N)`

[info] - send a `!done` to master on `!token(0)`

[info] - send a `!token(N-1)` to its neighbor on `!token(N)`

...

[info] All tests passed.

Listing 11: Output of the worker agent test suite

Testing Failure Scenarios

Successful executions are only a part of the full story. Indeed, in software testing
it is acknowledged that covering failures is both more important and challenging,
and thus requires more critical thinking by the test engineer [128]. Interestingly,
failure tests are especially important in agent-based programming because failing
under certain conditions may sometimes be the correct behavior for an agent.

Two failure tests are presented in listing 12. The first test sends a init(W)

goal message to the agent with W=-1 (line 3) but the first plan is applicable only
for W > 1 and the expected behavior of the agent in this situation is a failure
which is verified by expecting a NoApplicablePlan message. In the second test,
a goal message unknown is sent to the agent (line 8) for which the agent does
not have any plans and it should reply with a NoRelevantPlan (line 9). Note
that failure of a goal is not only reflected by the absence of an applicable plan or
more generally failure in execution of a plan; similar to the success scenarios, the
designer can define any other arbitrary criteria for a failure scenario.

Although we acknowledge that testing an agent program for every possible
failure can easily become an infeasible task [168, 167], certain failures may be
particular important for the designer to test, therefore there is value in enabling
this possibility.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 85PDF page: 85PDF page: 85PDF page: 85

4.4. Illustrative Example 73

1 "A worker agent" should {

2 "send a `NoApplicablePlan()` on `!init(-1)`" in {

3 worker.event(achieve,"init(-1)").source(mockedMaster).send()

4 mockedMaster.expect(NoApplicablePlan())

5 }

6

7 "send a `NoRelevantPlan()` on `!unknown`" in {

8 worker.event(achieve,"unknown").source(mockedMaster).send()

9 mockedMaster.expect(NoRelevantPlan())

10 }

11 }

Listing 12: Failure tests for worker agent

4.4.2 Coverage

We explore at this point whether and how off-the-shelf coverage tools such as
scoverage7 can be used for code coverage analysis of agent programs written in
ASC2, considering both statement and branch coverage aspect. To perform this
we simply add the scoverage plugin to our project and generate a coverage report.

The coverage report produced for the worker agent by means of the previous
tests is presented in Table 4.1. The worker.Agent row shows the coverage
for the internal mechanisms of the agent, like e.g. event handling, while the
other rows show the coverage report for each separate event, as an example, the
worker.token 1 refers to an event token in worker agent with 1 parameter. The
branch coverage report mainly concerns conditional statements in the generated
Scala code of the agent and should be regarded only as informal information about
the coverage of the main script.

These results show that our tests indeed covered most of the behaviors that
the agent might have. In fact, by exploring the coverage analysis we can see the
reason for which the worker.token 1 has less coverage: the missed branch can
be explained by the fact that the tests did not include any scenario in which the
token(N) plan fails. Also note that while the example script did not contain
any sub-goals or conditional statements in the plans, ASC2 Translator generates
sub-goal adoptions as function calls and translates conditional statements to their
counterpart in the underlying language, therefore, coverage tools like scoverage
are able to calculate the correct number of covered and total possible branches for
deeper goal-plan trees.

7http://scoverage.org/

http://scoverage.org/

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

74 Chapter 4. Interoperability and Automated Tests: DevOps

Component Statement Coverage % Branch Coverage (Covered/Total)

worker.Agent 93.5 6/6

worker.init 1 93.5 2/2

worker.token 1 80.2 3/4

Table 4.1: Coverage analysis of the worker agent

4.4.3 Integration/System Testing

Even following the guidelines on categorizing different levels of testing in MAS
[127], there is no definite technical distinction in place. Typically test libraries
provide mechanisms such as annotations for the designer to label test suites
with its (their) related level(s) to orchestrate their execution. As illustration,
we consider an integration test to verify a token ring MAS system consisting of
the previously mentioned worker agents and a master agent. The test suite is
reported in listing 13.

1 class TokenRingIntegrationSpec extends ... {

2

3 //a communication layer that records a trace of the interactions

4 object recordedComs extends AgentCommunicationsLayer { ... }

5

6 val token_pattern = "token\\([0-9]+\\)".r

7 val done_pattern = "done".r

8

9 "A token ring MAS with W = 100, T = 50 and N = 4" should {

10 "have 250 `token(X)` and 50 `done` message" in {

11 // create the agents

12 mas.registerAgent(new worker(coms = recordedComs),

13 num = 100)

14 mas.registerAgent(new master(coms = recordedComs),

15 name = "master")

16 // invoke the system

17 mas.getAgent("master").event(achieve, "start(50,4)").send()

18 // verify the interactions

19 watchdog.expectTerminated(mas, 10.seconds)

20 assert(recordedComs.trace.count(token_pattern.matches) == 250)

21 assert(recordedComs.trace.count(done_pattern.matches) == 50)

22 }

23 }

24 }

Listing 13: Integration test suite for the token ring system

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 87PDF page: 87PDF page: 87PDF page: 87

4.4. Illustrative Example 75

The test will be centered around the interactions between agents and the state
of the system in a specific setting of our token ring. The token ring is defined with
100 worker agents and 1 master agent (lines 12-13), and, to be able to verify the
exhibited interactions, we use dependency injection to initialize all the agents by
means of an overridden instance of the communication layer (line 4), created to
record every message passed in the system into a list.

To invoke the system, a start(T,N) is sent to the master agent (line 15). We
are interacting with the master from a black box perspective: although the event
start(T,N) is exposed, the internal mechanisms of this agent are assumed to be
unknown.

Three criteria are verified for this system. Firstly, we consider a system level
performance based criteria as we expect the system to be terminated under 10
seconds (line 17). Next, we use two known expectations from a token ring system
to verify the correct execution of the system: at the end of execution, there should
be (a) T number of done messages and (b) T × (N + 1) number of token(X)
messages in the trace. The interaction verification statements are presented
respectively in lines 18-19. Recalling the flexible definitions of testing levels, note
that these integration/system test could be considered from the perspective of
master agent as a unit/agent level test possibly with mocking the worker agents.
Similar to previous tests, running this suite via sbt yields the output in listing 14.
[info] A token ring MAS with W = 100, T = 50 and N = 4 should

[info] - have 250 `token(X)` and 50 `done` message

...

[info] All tests passed.

Listing 14: Output of the token ring integration test suite

4.4.4 Continuous Integration

The proposed approach for testing can be easily combined with online CI services.
This process generally includes utilizing source repositories like Github8, CI services
like TravisCI and code analysis services like Coveralls9. The only step needed
to set the CI cycle for an ASC2 project is to configure the source repository of
the project in a way that the automated CI cycle is triggered on every push to
the repository. This can be done by adding a configuration file that provides
information for the CI service how to compile and test the project via sbt.

Following this method, a MAS project does not need to be only located in a
single source repository. For instance, different types of agents can be developed
in different projects by separate teams and only be used as dependencies in the
development of the system. We believe this is an interesting practical innovation,
improving the scalability of MAS projects with respect to their development.

8https://github.com/
9https://coveralls.io/

https://github.com/
https://coveralls.io/

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 88PDF page: 88PDF page: 88PDF page: 88

76 Chapter 4. Interoperability and Automated Tests: DevOps

Figure 4.2: Continuous integration applied on a Token ring program whose master
and worker agent scripts are located on other repositories.

An overview of an example CI process for the token ring is presented in Figure
4.2 in which the sources of worker and master agents are located in separate
repositories, and a third token ring repository uses them as dependencies. When
the system designer pushes the project to the repository, the CI service fetches
the source and compiles and tests it via sbt and records the results10. Then, the
code coverage report is committed to the code analysis service11.

4.5 Discussion and Conclusion

Despite the critical points/observations concerning MAS testing raised in the liter-
ature, in this chapter we provide several support arguments for using mainstream
testing tools for MAS and agent-based programming, by means of a concrete use
case. We implemented a multi-agent system reproducing a token ring benchmark
with the framework ASC2, and then we run tests (success, failure, coverage) at
unit/agent level as well as at integration/system level.

At the unit and agent level (unit testing) we performed tests concerning events,
plans and goals. The somehow unexpected result of the experiment is that such
an approach does not neglect the theoretical complexity of BDI agents but it truly
offers a complementary tool for their development. We were able to test successful
(plan) completions, internal states and the belief base, failures, and fine-grained
interactions. These possibilities can be seen as offering constructs mapping e.g.
to declarative and procedural goals in BDI agents [170]: the designer can define
the achievement/failure of a goal not only in terms of completion/exception of a
plan, but also as determined by any arbitrary indicator internal or external to the
agent. This showed that testability of agent programs defined in a framework is
closely related to the design choices of that framework.

10https://travis-ci.com/github/mostafamohajeri/agentscript-test
11https://coveralls.io/github/mostafamohajeri/agentscript-test

https://travis-ci.com/github/mostafamohajeri/agentscript-test
https://coveralls.io/github/mostafamohajeri/agentscript-test

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 89PDF page: 89PDF page: 89PDF page: 89

4.5. Discussion and Conclusion 77

At the integration/group and system/society level (integration testing) we
performed tests with simple verification criteria, but these criteria can easily be
extended to more sophisticated and realistic interaction analysis and verification
methods developed by the MAS community [27]. Additionally, we illustrated how
the proposed approach enables the MAS designer to take advantage of continuous
integration (CI) services without extra effort. This is particularly important for
MAS designers that require to integrate and test their work continuously with
other projects.

There is an additional benefit of using mainstream test tools for BDI agents,
and especially for frameworks that are based on higher-level logic-based DSLs.
Those frameworks generally map primitive actions to constructs specified in a
lower-level programming language like Java. By using a testing process compatible
with both higher level models and lower level implementations, the testing process
can be more efficient and seamless for the designer specially if the agent models
are only a part of a project that includes other computational entities that are
being developed alongside the agents.

An issue in using mainstream test libraries for a BDI framework with a logic-
based DSL is the disparity between the high-level agent DSL and the lower-level
language used for the tests. This can be addressed by either developing approaches
to write tests in the high-level DSL or creating interfaces for the low-level language
to enable the test engineer to implement tests at a proper level of abstraction. In
this work we have taken the latter approach. The intuition behind this choice was
that frameworks based on cross-compila-tion [65, 141] produce source codes that
can be directly integrated within standard build tools.

Can our results be generalized to other agent programming frameworks?
Motivated by the success of works like AJPF/MCAPL [62] that provides model
checking for multiple BDI frameworks, as a future study we intend to explore
how to apply this approach to a wider range of MAS frameworks. Yet, we can
already trace some higher-level considerations. The answer, at the unit/agent
level, depends on compilation and the execution model of those frameworks.
For frameworks like Jade and JS-son [105], that use mainstream programming
languages to define agents, these tools should be compatible out of the box with
minor effort [106]. For cross-compilation-based frameworks like Astra [65] and
ASC2 [126] it is only the matter of tooling (e.g. build tool plugins) to allow them
to use mainstream testing tools. For interpreter-based frameworks like Jason [26]
and GOAL [99], because they require their own dedicated reasoning engines and
execution environment, testing via such tools may prove to need more work and
possibly modifications to the framework. This issue may be not so problematic,
as there are already many works that propose dedicated testing and debugging
approaches for interpreter-based frameworks [108].

At the integration and system level, and also with respect to compatibility with
CI services, generally externalized to the execution of the tested entity, we believe
it is possible to consolidate other frameworks regardless of their compile/interpret

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 90PDF page: 90PDF page: 90PDF page: 90

78 Chapter 4. Interoperability and Automated Tests: DevOps

model. This could lead to seamless integration testing of systems defined in each
framework with mainstream software testing tools or dedicated ones.

In perspective, our overarching research concerns socio-technical and complex
multi-domain infrastructures; we believe that Agent-Oriented Software Engi-
neering can be a powerful technical tool with robust theoretical foundations for
designing, modelling, implementing and testing such systems. Enhancing their
development cycle goes with a seamless integration of multi-agent systems into
modern infrastructures. This is a critical requirement to utilize the full potential
of MAS in a real production-level setting.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 91PDF page: 91PDF page: 91PDF page: 91

Chapter 5

Introducing Norms to Agents:
Normative Advisors

This chapter explores the next step in modelling norm-governed systems by
introducing a modular architecture for integrating norms in autonomous agents
and multi-agent systems. As the interactions between norms and agents can
be complex, this architecture utilizes multiple programmable components to
model concepts such as adoption of multiple personal and/or collective, possibly
conflicting norms; interpretation and qualification between social and normative
contexts; possibility of intentionally (non-)compliant behaviors; and resolution of
conflicts between norms and desires (or other norms). The architecture revolves
around normative advisors that act as the bridge between intentional agents and
the institutional reality. As a technical contribution, a running implementation of
the architecture is presented based on the ASC2 framework and eFLINT norm
reasoner.1

5.1 Introduction

Designing software agents that can reason with norms—technical instances of
normative agents—requires evidently having a suitable computational model for
reasoning with norms. This is a challenging task because norms are more than a set
of formal rules extracted from a legislative text: they emerge from multiple sources
with different degrees of priority, they require interpretation to be encoded and
qualification to be applied within a social context. Furthermore, they continuously
adapt, in both expression and application [18].

Previous proposals to embed norms in multi-agent-systems (MAS) have focused
on extending the agent architecture (usually based on beliefs-desires-intentions,
or BDI) to allow for forms of normative reasoning [68, 33, 156, 49]. Two general
approaches can be identified in the literature. One can encode norms as facts, and

1The material presented in this chapter refines and extends elements presented in [134].

79

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 92PDF page: 92PDF page: 92PDF page: 92

80 Chapter 5. Introducing Norms to Agents: Normative Advisors

axiomatize normative reasoning with dedicated rules, to leverage the inferential
engine provided with the agents; in this case, no modification needs to be applied
to normative agents compared to non-normative agents. In contrast, in frameworks
like BOID [33] or B-DOING [68], explicit normative components like obligation (O)
are considered to play a role in the decision-making cycle, requiring a modification
of said cycle. In both cases, the agent is considered as a unity from an execution
point of view: the agent script is a program, usually interpreted, and its internal
reasoning cycle executed by a single thread. This work starts from the observation
that this constraint is a rather strong one, not needed, and not always the most
suited. Rather than an event-based reactive architecture based on a single event-
queue and scheduling, individual agents may be each implemented as a system of
concurrent actors, provided with some form of organization (e.g. event dispatching)
and interaction mechanism (e.g. messaging).

Normative agents offer a context in which this way of design gains more
viability, for several reasons. On content level, multiple normative sources may
be concurrently relevant, and/or multiple interpretations of the same normative
sources may be available (e.g. retrieved from previous cases), and these may be
possibly conflicting. Enabling to maintain those in a modular fashion is a suitable
precondition for update/adaptation actions, where norms can be changed on the
fly, and agents may decide at run-time e.g. to change the relative priority between
normative components. On method level, there is still an ongoing debate on what
is the most adequate representation model for norms, and on proper methods for
normative reasoning (e.g. managing conflicts). Enabling the recourse to external
tools, and supporting programmability of the coordination level, greatly empowers
modelers/programmers/designers to test and compare different choices. Finally,
at functional level, most of the knowledge instilled in norms concerns a full social
system; only a part is contingently relevant to the agent. Designing the system so
that it distributes the inferential load at best (and at need) externally from the
decision-making is seemingly the most efficient option.

Contribution For these reasons, this work proposes an abstract architecture
that encapsulate norms (namely encoded in terms of normative relationships
of Hohfeld’s framework) in a MAS. The architecture centers around normative
advisors that can be utilized by (other) agents in the MAS as a sort of council
about the institutional state of affairs and normative relations between agents,
highlighting the mapping between the social and institutional views of the en-
vironment. Agents may resort to personal or to collective advisors, depending
on the decentralization constraints set up by the designer. As a technical contri-
bution, we present a practical implementation of this architecture that relies on
the AgentScript BDI framework (ASC2) [126] for programming agents, and norm
specification framework eFLINT [158] for encoding norms.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 93PDF page: 93PDF page: 93PDF page: 93

5.2. Core components 81

Figure 5.1: Sale transaction as a Petri net workflow

Related works The B-DOING framework [68] explores logical relations between
belief, desire, obligation, intention, norms and goals in agents and their interac-
tions like conflicts and possible appraoches to balance them in agent’s behavior.
Similarly, the BOID architecture [33, 133] proposes a belief, obligation, intention
and desire architecture with a feedback loop to take the effects of actions before
committing to them. These studies (and many others, e.g., [60, 156]) propose
extensions to the BDI architecture to add (regulative) norms as part of the agents’
mind and to resolve conflicts with pre-defined rules as part of the agent’s reasoning
cycle.

The normative BDI architecture presented in [49] proposes different contexts for
an agent: mental, functional and normative contexts, plus “bridge rules” between
them. Their approach aims at creating maximally compliant agents and focus
on solving conflicts between norms at the time of adoption by using pre-defined
conflict resolution rules. The work presented in [35] propose an approach for
ethical reasoning in MAS by programming ethical governors. Their method is
close to ours in the sense that they also take advantage of extra agents in a MAS,
but they focus on machine ethics used in the decision-making of one agent.

Structure of the document Section 5.2 gives background on the core com-
ponents that the proposal uses, providing some detail on the AgentScript/ASC2
and eFLINT frameworks. Section 5.3 lays out the theoretical framework for the
proposed architecture, whereas Section 5.4 describes details of its implementation.
Section 5.5 reflects on the capabilities of our implementation, suggests future
directions, and draws connections with related work.

5.2 Core components

To illustrate our approach, we will consider as a running example a marketplace
environment consisting of buyer and seller agents. This target domain can be seen
as an abstract model of many real-world domains, e.g. data market-places and
more in general data-sharing infrastructures, electronic trading infrastructures,
etc. The process model of a individual sale transaction—prototypical example of
bilateral contract—can be represented as a workflow through a Petri-net, presented
in Figure 5.1. A seller offers a buyer an item for a certain price. If the buyer

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 94PDF page: 94PDF page: 94PDF page: 94

82 Chapter 5. Introducing Norms to Agents: Normative Advisors

accepts the offer, then the seller is expected to deliver the aforementioned item to
the buyer, and the buyer is expected to pay the seller the agreed upon price (in any
order). The workflow is a simplified representation of the normative mechanisms
in place during an actual sale transaction. Furthermore, it does not consider the
intentional aspects on the agents during the transaction, e.g. based on which
desires or goals the agents may be willing to engage in the transaction, as these
concepts stay external to norms.

5.2.1 Intentional agents

The intentional agents defined in this chapter intuitively are implemented in ASC2.
Continuing with the example, Listing 15, presents the script of a buyer agent. The
initial beliefs (lines 1-3), initial goals (line 5), and plan rules (line 7 and onwards)
are the components of the script. The script is further explained in Section 5.4.3.

5.2.2 Norms and Normative (Multi-Agent) Systems

Following Gibbs, we consider norms as “a collective evaluation of behavior in
terms of what it ought to be; a collective expectation as to what behavior will be;
and/or particular reactions to behavior, including attempts to apply sanctions or
otherwise induce a particular kind of conduct” [85]. This definition is relevant to
our purposes as it gives primacy to action (rather than to situations, as in most
deontic logic accounts). In the context of multi-agent systems, and even more
of in MAS, an action-centered approach is intuitively more suitable, as actions
are the only means agents have to intervene on the environment, and by which
determine normative consequences.

Categories of Norms Norms are traditionally distinguished between regula-
tive and constitutive norms [144, 21, 149]. Regulative norms regulate behaviors
that exist independent of the norms and are generally prescribed in terms of
permissions, obligations and, prohibitions (e.g. traffic regulations). Constitutive
norms determine that some entity (e.g. an object, a situation, a certain agent, a
certain behaviour) “counts as” something else, creating a new institutional entity
that does not exist independently of these norms. (for example, the concept of
marriage or money as a legal means of payment). The concept of institutional
power is particularly relevant in the context of constitutive norms, as it is used to
ascribe institutional meaning to performances (e.g. raising a hand counts as a bid
during an auction). A conceptual framework that instead contains both deontic
and potestative dimensions is the one proposed by Hohfeld [100], whereas deontic
logics, although much more popular, by definition focuses on regulative norms.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 95PDF page: 95PDF page: 95PDF page: 95

5.2. Core components 83

1 needed_item("Book1").

2 fair_price("Book1", 5).

3 have_money(10).

4

5 !init(#sale_advisor.getClass, "sale.eflint", "BuyerAdvisor").

6

7 +!init(AgentType,EFFile,Name) =>

8 #spawn_advisor(AgentType, EFFile, Name).

9

10 +offer(I ,P) =>

11 #achieve("BuyerAdvisor", perform(offer(Source, Self, I, P)));

12 !consider_buying(Source, I ,P).

13

14 +!consider_buying(Seller, I, P) :

15 needed_item(I) && fair_price(I, FP) &&

16 P =< FP && have_money(M) && M >= P =>

17 #tell(Seller, accept(I, P));

18 +pending(accept(I, P)).

19

20 +acknowledge(accept(I, P)) : pending(accept(I, P)) =>

21 -pending(accept(I, P));

22 #achieve("BuyerAdvisor", perform(accept(Self, Buyer, I, P))).

23

24 +duty_to_deliver(Seller,Buyer,I) :

25 Source == "BuyerAdvisor" && Buyer == Self =>

26 +expected_delivery(Seller,I).

27

28 +delivery(Sender, I) : expected_delivery(Sender, I) =>

29 -expected_delivery(Sender, I);

30 #achieve("BuyerAdvisor", perform(deliver(Sender, Self, I)).

31

32 +duty_to_pay(Buyer, Seller, P) :

33 Source == "BuyerAdvisor" && Buyer == Self =>

34 !pay(Seller, P).

35

36 +!pay(Seller, P) : have_money(M) && M >= P =>

37 #pay(Seller, P);

38 #achieve("BuyerAdvisor", perform(pay(Self, Seller, P)).

39

40 +!pay(Seller, P) => ... ALTERNATE APPROACH TO PAYMENT ...

Listing 15: Buyer agent script as ASC2 program

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 96PDF page: 96PDF page: 96PDF page: 96

84 Chapter 5. Introducing Norms to Agents: Normative Advisors

Normative systems

The term normative system can be applied to a system of norms, and a multi-agent
system guided by norms. Our work builds upon the second standpoint, and more
precisely, we apply the so-called normchange definition of normative MAS system
by Boella et al. [22]: “a multi-agent system together with normative systems
in which agents on the one hand can decide whether to follow the explicitly
represented norms, and on the other the normative systems specify how and in
which extent the agents can modify the norms”. This definition does not assume
any particular inner workings of the agents except that they should be able to
somehow decide whether to follow the norms or not and they should be able to
modify them. Furthermore, there is no assumption about the representation of
the norms, except that they should be explicit (i.e. a ‘strong’ interpretation of
the norms [20]) and modifiable.

The eFLINT norm language

The eFLINT language is a DSL designed to support the specification of (interpreta-
tions of) norms from a variety of sources (laws, regulations, contracts, system-level
policies such as access control policies, etc.) [158, 157]. The language is based on
normative relations proposed by Hohfeld [100]. The type declarations introduce
types of facts, acts, duties and events, which together define a transition system in
which states—knowledge bases of facts—transition according to the effects of the
specified actions and events. The transitions may output violations if an action
triggered a transition with unfulfilled preconditions (e.g. only sellers can make
offers) or if any duties are violated in the resulting state2.

Listing 16 shows an eFLINT specification for our running example. The Actor
and Recipient clauses and Holder and Claimant clauses of act- and duty-type
definitions establish constructs mapping to Hohfeldian power-liability and duty-
claim relationships. The Creates and Terminates clauses describe the effects of
actions when performed, enabling reasoning over dynamically unfolding scenarios.
An instance of offer can be performed without any pre-conditions and it holds
when there is a seller instance. The act accept is only available after an offer:
accepting a non-existing offer is considered a violation of the power to accept
offers. Acceptance of an offer creates the two act instances pay and deliver which
can be performed in any order. The duties express that the pay and deliver

actions are expected to be performed by their respective holder after they are
created as part of the accept action. As described in Listing 16, no violation
conditions are associated with the duties.

2In eFLINT, a permitted act may result in changes to normative positions and that the ability
to trigger these changes constitutes a power; therefore act frames can be seen as specifying at
the same time powers and permissions, and, absence of powers map to prohibitions (as e.g., in
access control methods). Other computational frameworks based on Hohfeld propose a more
explicit separation between deontic and potestative categories [150].

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 97PDF page: 97PDF page: 97PDF page: 97

5.3. Normative MAS via Normative Advisors 85

1 // fact definitions

2 Fact buyer

3 Fact seller

4 Fact item

5 Fact price Identified by Int

6

7 // act-type definitions

8 Act offer Actor seller Recipient buyer

9 Related to item, price

10 Holds when seller

11 Creates

12 accept(buyer, seller, item, price)

13

14 Act accept Actor buyer Recipient seller

15 Related to item, price

16 Creates

17 pay(buyer, seller, price),

18 duty_to_pay(buyer, seller, price),

19 deliver(seller, buyer, item),

20 duty_to_deliver(seller, buyer, item)

21

22 Act pay Actor buyer Recipient seller

23 Related to price

24 Terminates

25 duty_to_pay(buyer, seller, price)

26

27 Act deliver Actor seller Recipient buyer

28 Related to item

29 Terminates

30 duty_to_deliver(seller, buyer, item)

31

32 // duty-type definitions

33 Duty duty_to_pay

34 Holder buyer

35 Claimant seller

36 Related to price

37

38 Duty duty_to_deliver

39 Holder seller

40 Claimant buyer

41 Related to item

Listing 16: eFLINT Specification for Sale Transaction norms

5.3 Normative MAS via Normative Advisors

Our approach is based on the introduction of normative advisors that enable
intentional agents to communicate with an external norm reasoner. We assume
the parent agent is a BDI agent, i.e. it has the capabilities to reason with beliefs,

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 98PDF page: 98PDF page: 98PDF page: 98

86 Chapter 5. Introducing Norms to Agents: Normative Advisors

desires and intentions. The tasks of maintaining an institutional perspective
(state) and reasoning about specific sets of norms is delegated to the advisors.
The advisors are initialized with a particular norm specification and maintain
an institutional perspective on the environment, which is continuously updated
at run-time. A normative advisor is therefore viewed as maintaining (inferential
mechanisms necessary to operationalize) a norm instance. Both regulative and
constitutive norms are taken into account. The normative (institutional) state of
the world is stored in a way that can both be queried and updated at any time.
An update can generate normative events that the agent is to be notified about.
Through the normative advisors, a social agent acquires various capabilities to
interact with norms. As a consequence, norms interactions become programmable
parts of the agent, realizing our goal of using norms for behavioural coordination
between agents and for specifying qualification processes from social context to
norms. With such an infrastructure, an agent becomes:

• able to adopt or drop any number of norm sources as norm instances;

• able to qualify observations about their environment as normatively relevant
updates, and conversely to respond to normative events by acting accordingly
in their environment;

• able to query, update, revert and reset a normative state of any norm
instance;

• able to receive and process or ignore normative events (e.g. new claims and
liberties)

• able to follow or violate normative conclusions (e.g. obligations) or query
responses (e.g. permissions and prohibitions)

• able to modify any of the above abilities at run-time.

Normative reasoning occurs based on these inputs—triggered by queries or
updates— with all conclusions made available as internal events to the advisor.
Note that an agent can have multiple advisors for different (instances of) sets of
norms. An agent is free to qualify observations about events in the environment,
other agents’ actions, its own beliefs and actions—or any combinations of these—
and report the resulting observations to the relevant normative advisors. In other
words, this infrastructure makes possible a rich, recursive interaction between be-
havioral decision-making and normative reasoning. The proposed model supports
a number of programmable concepts applicable to different functions:

1. Perception: which internal/external events are received and processed or
otherwise ignored;

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 99PDF page: 99PDF page: 99PDF page: 99

5.4. Implementation 87

2. Reaction and planning : what are the relevant reactions to an event, which
reactions are applicable in the current context and which reaction is the
most preferred one to execute;

3. Norm adoption: when and how to adopt or drop a set of norms;

4. Qualification of social context : how an event or query is qualified, i.e. which
is its normative counterpart for each norm instance;

5. Querying : when and how the normative state of an instance needs to be
queried (e.g. for compliance checking);

6. Reporting : what events/updates are reported to which norm instances;

7. State change: how a normative event changes a norm instance’s state;

8. Event generation: what normative events are created as the result of an
instance’s state update;

9. Qualification of normative concepts : which events should be raised as the
result of what normative conclusions reported by a norm instance.

To concretize the proposed approach, we will discuss at higher-level why
it is feasible to implement a system meeting these requirements by utilizing an
AgentSpeak(L)-like BDI framework (AgentScript/ASC2, in particular) and a norm
reasoner that can store an updatable and queryable normative state, generating
events on updates (eFLINT, in particular). Perception, planning and execution are
basic core functions of reactive BDI agents as those specified via AgentSpeak(L),
i.e. when an event is received, the agent performs a series of actions as reaction.
Qualification can be encoded as part of planning: what reaction is selected for an
event (or a series of events) in any context signifies how that event is qualified.
Norm adoption, querying and reporting intuitively become part of this reaction.
Note however that querying can also be part of planning, as a query response
may affect what reactions are applicable. State changes happen internally to the
norm instance as the result of reporting, and then normative events are generated,
which are in turn qualified as events by the agent, creating a full circle. Finally, if
both the BDI framework and norm framework allow for run-time changes, as is
the case with ASC2 and eFLINT, then all aspects are changeable and dynamic.

5.4 Implementation

This section describes an architecture for advisors and discusses how the ASC2
BDI framework and the eFLINT normative reasoning framework are used to
implement the architecture. The eFLINT framework is used to implement the
norm base. The advisors as well as the intentional agents that employ them are

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 100PDF page: 100PDF page: 100PDF page: 100

88 Chapter 5. Introducing Norms to Agents: Normative Advisors

Figure 5.2: Normative advisor’s architecture

defined in ASC2. Our implementation benefits from the modularity provided by
ASC2, allowing easy replacement of different parts of the agent3 and the Java API
provided by eFLINT.

5.4.1 Normative advisor architecture and decision-making
cycle

Figure 5.2 illustrates an overview of the architecture of a normative advisor. It
is inspired by the BDI architecture of Jason [26] and resembles ASC2’s default
functional architecture in Figure 2.1. In effect, in this architecture a normative
advisor can be seen as a BDI agent in which the (typically Prolog-like) belief-base
is replaced the norm reasoner, thus, logical reasoning of the agent is replaced with
normative reasoning. Apart from the differences between a logical reasoner (e.g.
Prolog) and a norm reasoner (e.g. eFLINT), the main architectural differences
of an advisor with a typical BDI agents are: (1) the belief-base (in this case, the
norm-base) of the agent can generate more than just belief-update (or fact-update)
events, it may now also raise duty events, act (enabled/disabled) events and
violation events upon which the agent can react according to its plan library; (2)
from the execution context of a plan alongside fact-update actions (+fact and
-fact), there can now be act-perform actions (#perform(act)). These differences
arise from the the fact that unlike a logical reasoner like Prolog that typically uses

3ASC2 uses Dependency Injection, meaning most of the dependencies of an agent (e.g. belief-
base, communication layer) are passed to it; also, Inversion of Control, meaning higher-level
objects (e.g. agent) define a generic control flow and call into lower-level potentially customized
objects (e.g. belief-base) to concretize the execution.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 101PDF page: 101PDF page: 101PDF page: 101

5.4. Implementation 89

backward-chaining to infer facts based on queries, the eFLINT framework also
produces information in a forward-chaining manner, thus generating more events
for the advisor to process. Despite these modifications, the core of the AgentScript
DSL, and the capabilities of the framework, like goal adoption, communication,
and performing arbitrary primitive actions, remain the same as with intentional
agents.

Let us analyse a decision-making cycle of the advisor. When the advisor
receives an external or internal event, if it is a fact-update, it will be sent to the
norm base. If the event is an achievement or test event, it will be sent to the event
queue. Events are taken from the event queue by an event-selection function, at
which moment the head of the event is matched with the plan library to find all
the relevant plans. The context conditions of relevant plans are checked against
the normative state of the norm base in order to select only applicable plans.
Then, a plan selection function selects one applicable plan and turns the plan into
an intention, and, consequently, an intention selection function chooses intentions
for execution. If the body of the plan includes any fact-update actions (+fact
and -fact) or act performance (#perform(act)), then these are sent to the norm
base. Whenever there is any update committed to the norm base, there could be
multiple new events or new facts derived by the normative reasoner that are sent
back to the advisor as internal events.

These new capabilities are also the result of replacing the Prolog reasoning
engine with the eFLINT reasoner. Any Boolean expressions in the DSL can now
refer to pre-defined predicates corresponding to eFLINT keywords for querying the
norm base: holds/1 is used to check if a fact (or act, duty, etc.) holds, enabled/1
whether the preconditions of an act hold, and violated/1 checks if a duty was
violated. A comprehensive list of possible interactions with the eFLINT norm
reasoner is given in the next subsection.

5.4.2 eFLINT norm base implementation

The eFLINT language is implemented in the form of a reference interpreter in
Haskell4. As discussed in [158], the interpreter can run in a ‘server mode’ in which
it listens to requests on a certain port and produces responses according to some
API. A layer has been developed on top of the server to maintain multiple server
instances as is need for supporting multiple advisors with a norm base each. An
eFLINT server instance can receive the following requests:

• Fact creation/termination/obfuscation. A created fact (instances of fact-
types, act-types, duty-types and event-types are referred to as facts) is set
to ‘true’ in the knowledge base, a terminated fact to ‘false’ and any existing
truth-assignment is removed when a fact is obfuscated.

4Publicly available online https://gitlab.com/eflint/haskell-implementation.

https://gitlab.com/eflint/haskell-implementation

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 102PDF page: 102PDF page: 102PDF page: 102

90 Chapter 5. Introducing Norms to Agents: Normative Advisors

• Triggering an action or event. Instances of act-types and event-types can
be triggered, resulting in the effects of the action or event manifesting
on the knowledge base (#perform in Listing 17). These effects can be to
create/terminate/obfuscate certain facts, as listed in the corresponding (post-
condition) clauses of the type declaration of the triggered action/event. Note
that, because of the synchronization mechanism, multiple actions/events
can be triggered at once.

• A query in the form of a Boolean expression. The expression is evaluated
in the context of the current knowledge base and can be used to establish
whether a certain fact holds true in the current knowledge base, whether an
action is enabled (holds in Listing 17) or whether a duty is violated, etc.

• The submission of a new type declaration or the extension of an existing
type. Both have the effect of modifying the norms in the sense that the
underlying transition system is modified.

Every request can be associated with additional context information in the form of
truth-assignment to facts that override any conflicting assignments in the current
knowledge base (e.g. the current UNIX time). This mechanism can also be used
to provide truth-assigments for ‘open types’ (see below). An eFLINT instance
generally operates synchronously, i.e. will only send out information in responses
to requests5, updating the sender upon the following:

• Any created, terminated, and/or obfuscated facts. Note that this includes
changes to facts that are (or were previously) derived from other facts and
in this sense were indirectly modified by the incoming request

• Any changes to normative positions regarding duties, i.e. whether a duty is
no longer held by an actor or whether a duty is now held by an actor (e.g.
-duty and +duty in Listing 17). Violated duties are also reported as such.

• Any changes to normative positions regarding powers, i.e. which actions
became (or are no longer) enabled. If the incoming request was triggering
one or more actions that were not enabled, the effects of the actions still
manifest, but the violations are reported.

• In response to a query, the reasoner responds with the result of the query
(state is unchanged).

• If the incoming request requires the evaluation of a fact for which no truth-
assignment is given and which is an instance of an ‘open type’—a type for
which the closed world assumption does not hold—then an exception is

5If necessary, a clock event can be triggered periodically, possibly resulting in synchronous
updates.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 103PDF page: 103PDF page: 103PDF page: 103

5.4. Implementation 91

1 +?permitted(A) : enabled(A) => #respond(true).

2 +?permitted(A) => #respond(false).

3

4 +!perform(A) : enabled(A) => #perform(A).

5 +!perform(A) => #tell(Parent, failed(A)).

6

7 +duty(D) => #tell(Parent, D).

8 -duty(D) => #untell(Parent, D).

Listing 17: AgentScript specification of norm advisor.

raised and reported to the sender of the request. Evaluation is interrupted
and the state remains unchanged.6

All changes to facts’ truth-assignment, normative positions and violations register
as internal events in the normative advisor (as shown by Listing 17), which will
process and possibly report them according to its script.

5.4.3 Spawning and interacting with advisors

Scripts of normative advisors (written in ASC2 DSL) run on top of the advisor
architecture and give the programmer access to the norm reasoner, both providing
its input in the form of queries and updates and responding to the normative
events the reasoner generates. In such sense, advisors functionally act as “bridges”
or chain of transmission between institutional and social realms. Listing 17 shows
a basic script for an advisor in our running example. The advisor has four test-
goal plans related to acts and two related to duties. The query +?permitted/1

receives an act and responds with true if the given act is “permitted” according
to the underlying norm reasoner—in the case of eFLINT “enabled”—and false

otherwise. The agent has similar plans to submit (or not) the performance of
acts (+!perform/1) to the norm reasoner. The last two plans are triggered when
the internal norm reasoner creates (+duty/1) or terminates (-duty/1) a duty.
The advisor informs their parent of these changes. The fragment demonstrates
that observations about created and terminated duties are communicated to the
intentional actor (Parent) and that an action A can only be performed when it is
enabled according to the norm reasoner (or fails otherwise); however this script
does not demonstrate all the features possibly delivered by the architecture such
as internal events for violations, enabled/disabled acts, and asserted/retracted
facts.

To demonstrate spawning and interacting with a normative advisor, consider
again Listing 15 in which a script for a buyer agent is given. Together, Listings 15,

6The exception can be used by the parent of the advisor to acquire the missing information,
e.g. from another agent in the MAS.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 104PDF page: 104PDF page: 104PDF page: 104

92 Chapter 5. Introducing Norms to Agents: Normative Advisors

Figure 5.3: Market-place model

16, and 17 show the DSL code for buyer agent in the market-place as presented
on the right side of the Figure 5.3. The buyer agent spawns a normative advisor,
which in turn spawns an eFLINT server (norm reasoner). The buyer has its own
beliefs and desires: there is a specific item that it needs (needed_item/1), it has
a belief about the fair price (valuation) for that item (fair_price/2) and it has
a belief about how much money it possesses (have_money/1). When this agent
receives a +offer/2 message about an item and its price, first it interprets it as an
offer act and sends it to its advisor. Next, it adopts a goal of consider_buying
that item for the price. This goal has one plan associated to it, which checks
if the agent actually needs that item, if the price is considered a fair price and
finally if the agent has enough money to buy that item. If this is all true, it sends
a accept/2 message to the agent that made the initial offer. Unlike before, this
alone does not constitute performing the normative accept act. Instead, it waits
until it receives a +acknowledge/1 message from the seller before communicating
acceptance to the advisor. This extra-institutional step for the buyer to qualify
the act of accept, is an example of context-based qualifications in intentional
agents.

When the accept act is submitted to the norm reasoner, the two previously
mentioned duties of duty_to_pay and duty_to_deliver are generated and sent by
the advisor to the intentional part of the Buyer. For the duty_to_deliver the
agent is the claimant (it holds the expectation of performance); it could be that
the agent asks the seller agent at this point to deliver the item, but instead, with
the implicit assumption that the Seller agent is also compliant to the same set of
norms, this agent simply adds this expectation to its belief-base and only when it
has an observation of delivery/2, it will remove this expectation and send the
deliver act to the advisor.

For the duty_to_pay the agent is the duty-holder (it has the obligation to
perform) and reacts to this duty by adopting the goal pay/2 (meaning it has
the desire to be compliant). There are two plans for this goal, the first one is
straightforward and is applicable if the agent has the required amount of money
which then it will simply pay the Seller and submits this act to the advisor.
However, the second plan (not implemented) is applicable if the agent does not
have enough money, which means it needs to find alternative paths to relieve this
duty, e.g. by returning the item, borrowing from another agent or even asking
another agent to pay the seller instead. Specifying these alternatives requires
extensions to either the agents, to the norms, or to both. Rather than working out

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 105PDF page: 105PDF page: 105PDF page: 105

5.5. Discussion 93

one or more of these alternatives, we consider different interesting opportunities
of extending this straightforward example and reflect on the design of advisors in
the next section.

5.5 Discussion

This paper presents an approach to embed (constitutive and regulative) norms
into a MAS in a modular and versatile manner, enabling autonomous agents to
reason with norms. In this section we discuss this approach, its connection to
certain requirements for a normative MAS, while reflecting on the illustrated
example.

Inline with MAS, and distributed computing in general, we consider consis-
tency as a consequence of how a system is set up rather than it being ensured
by the framework through which the system is built. This allows for a kind of
partial consistency that enables freedom for local deviations that are not harmful
to the overall system behavior. In our approach, norm adoption and qualification
is done by each individual agent, such that their view on the normative state
of the world is dependent on both their script and their (bounded) perception.
Particularly desirable for social simulations, we can define agents that adopt and
follow the same norms but have different conclusions on the normative state of
affairs because they have had different observations. Alternatively, agents do not
have to follow the same norms but might still be able to behave in a coordinated
fashion. An example of the latter in our sales example is a buyer that believes, on
top of the existing norms of our example, that deliveries should be done before
payments. The buyer can behave according to their own norms without violating
the norms adopted by sellers, even though the norms are different.

As presented in the previous sections, our running example shows how coor-
dination between agents is achieved by adopting norms and deciding whether
to comply with norms. The example relies on the agents wanting to comply,
and therefore exhibiting coordinated behavior. In more adversarial environments,
additional enforcer agents can be added to provide (positive and negative) incen-
tives to comply. For example, our marketplace can be extended with an agent
that acts like a market authority. By responding to violations raised by their
advisor(s), the market authority can apply ex-post enforcement of norms on
the market’s participants. For example, a buyer refusing to pay can receive a
warning or, in the case of continued non-compliance, be banned from the market
altogether. This discussion further demonstrates the versatility of our approach: it
does not impose a priori centralized/decentralized governance or ex-ante/ex-post
enforcement. Instead, our approach gives the system designer the flexibility to
choose, design and test what their system requires.

Referring to the requirements in Section 5.3, the notion of adopting was
illustrated in the simplest form with the buyer agent in Listing 15 with the

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 106PDF page: 106PDF page: 106PDF page: 106

94 Chapter 5. Introducing Norms to Agents: Normative Advisors

#spawn_advisor/3 to adopt a norm as an initial goal. The agents also have the
#despawn/1 action to and drop an advisor. However, by adding extra mechanisms
in the agent’s script, more complex archetypes can be modelled, e.g. the agent
may be programmed to keep a score for a certain norm’s (and advisor’s) utility to
decide if it is an effective norm to keep adopted.

The notion of qualification—necessary to fill the gap between computational
forms of law and software [18]— can performed at various stages, thanks to the
multitude of programmable layers in our approach. An example of qualification
in the sale transaction is how a seller agent perceives a pay act from a buyer
agent. While represented as an act in the norms, in the social reality many
different actions can be perceived as a payment, e.g. both direct cash payment or
indirect 3rd-party transaction (bank transaction) can be qualified by sellers (and
authorities) as the act of paying. While direct cash payment is simpler to qualify
for the agent, a bank transfer can be more complicated. This qualification rule
could have been encoded in the script of an agent. For example, a bank agent
can update a seller that they have received new funds as part of a completed
transaction. The seller can then determine whether these funds constitute a
payment by a buyer for a particular item, and inform the corresponding advisor.
The same qualification can also be performed purely within norms, specifically
as in eFLINT, actions and events are synchronized such that preconditions and
effects of transitions are effectively ‘inherited’. In this way, explicit ‘counts as’
relations between performed actions (transitions) can be specified. Listing 18
shows for instance how a transaction event in a banking system is connected
with (qualified as) a payment action in our running example. This means the
intentional agent only needs to indicate to the advisor that the original event
transaction_completed was triggered which will automatically be inferred as
performance of a pay act.

1 Fact account

2 Placeholder sender For account

3 Placeholder receiver For account

4 Event transaction-completed

5 Related to sender, receiver, price

6 Syncs with pay(sender, receiver, price)

7 When buyer(sender) && seller(receiver)

Listing 18: eFLINT fragment connecting a bank transaction to the pay action.

The notions of query, update, revert and reset are already afforded by
the norm reasoner where query and update are typically provided by most norm
frameworks. However, eFLINT can be used to reason about the compliance
of historical, hypothetical, and – most relevant here – dynamically developing
scenarios: it relies upon a declarative component that lays out the norms in the

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 107PDF page: 107PDF page: 107PDF page: 107

5.5. Discussion 95

form of a labelled transition system and an imperative component that describes
traces in this system. This means that similar to belief queries and revision, the
agent is able to query and revise (assert/retract) institutional facts. But, unlike
physical state, institutional state is revertible as for example, an agent may notice
that its observation about performance of an act was not correct or even it wants
to infer hypothetical effects of performance of an act before reverting them.

Another important legal/normative requirement is adaptability to new (in-
terpretations of) norms. In our approach, such adaptation can be achieved in at
multiple ways. Firstly, apart from spawning new (and despawning old) advisors
to start using the new interpretation or encoding of a set of norms, ASC2 agents
are able to modify their script at run-time to change the interactions between
institutional and social reality, this is true for both intentional agents and advisors.
An agent can keep an advisor and its institutional state but instruct the advisor
to change how certain events should be handled by modifying its plans. This type
of modifications are also present in other BDI frameworks such as Jason. Secondly,
an existing advisor can be instructed to update the norm source of an instance it
has spawned by adding new type declarations or extending existing types. For
example, a violation condition can be dynamically added to the payment duty
by submitting the fragment Extend Duty duty_to_pay Violated when <EXPR> for
some Boolean expression, like a parameterized timeout event. These types of
modifications are particularly interesting as a future work to explore a principled
approach for studying changes in the norms such as issues about consistency
between variations of norms and impact of norm changes in social simulations.

However, this does not represent the whole adaptation problem as modification
of rules can be much more complex. From the prospective of jurisprudence,
laws can be separated into primary and secondary rules [92]; primary rules are
about how individuals should act (or not act) and duties that should be fulfilled.
Secondary rules are about how primary rules should be created and modified.
Typically, normative frameworks (including eFLINT) mainly focus on primary
rules while rarely taking secondary rules into account. This means that rather
than claiming to solve the whole adaptation/modification problem, we provide
a potential starting point to tackle this challenge and believe the fundamental
architectural design is adequate to implement other more complex approaches to
norm adaptation.

The notions of receive and process/ignore and follow/violate for norma-
tive conclusions connect directly to the concept of autonomy in the agent. All of
these are are already afforded by ASC2 on the language level (or AgentSpeak(L)
in a broader sense) as receive and process/ignore, and, follow/violate are simply a
matter of implementing the plans in the agent’s script that define the reactions
to such conclusions. Then, as the intentional agents’ language and execution
cycle are not modified in this architecture, intuitively, autonomy of the agents
is also not demoted by integration of norms, particularly in comparison with
any BDI agent that does not integrate norms. However, as a future work, these

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 108PDF page: 108PDF page: 108PDF page: 108

96 Chapter 5. Introducing Norms to Agents: Normative Advisors

concepts– specially follow/violate– should be encoded in a more expressive and
transparent manner. This can be done, for example, by utilizing declarative
constructs such as preferences on the language level (see [124]) to have an explicit,
yet programmable way of ordering between intentional (e.g. desires, goals) and
normative (e.g. obligations) dimensions of the agent.

5.6 Conclusion

This work presented a theoretical framework for embedding norms in a MAS. It is
generally acknowledged that agents in a MAS vastly benefit from utilizing norms
for more effective/efficient coordination. Here it was further argued that norms,
embodied as institutional views of the state of the environment, need normative
advisors to facilitate the bridging between institutional and extra-institutional
realms. The proposed architecture included using a BDI framework and a norm
reasoning framework for creating normative advisors and was shown to address
the main requirements of normative (multi-agent) systems as identified by the
community. A practical running implementation of this architecture7 using mostly
off-the-shelf tools was presented via a market example to further illustrate the
applicability of the approach.

As autonomous agents, norms, and their interactions deal with notions and
constructs hard to concretize and on which it may be hard to reach an agreement,
they may have different definitions and usages in different scientific communities.
Alongside the proposal of the architecture and tools in themselves, this work
assumed a high priority for flexibility as a requirement in frameworks utilized in
designing normative (multi-agent) systems by proposing multiple programmable
components varying from pure context-free and abstract norm specifications to
perception/action layer of intentional agents. These components aimed at satisfy-
ing the higher level requirements of normative agents and (multi-agent) systems
without putting any constraint on the language or logic used in components.

7publicly available:
https://github.com/mostafamohajeri/asc2-data-marketplace-example

https://github.com/mostafamohajeri/asc2-data-marketplace-example

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 109PDF page: 109PDF page: 109PDF page: 109

Chapter 6

Example 1: Coordination in MAS via
Norms

Until this point, this thesis has introduced tools and methodologies for modelling
and designing norm-governed (multi-agent) systems. This chapter utilizes these
tools to illustrate, implement and analyze a model of a Data Market-Place as a
normative multi-agent system. Norms in this context are used as a fully distributed
coordination and monitoring mechanism between participants of the market. The
goal of the chapter is two-fold: (1) illustrating how such models can be valuable
assets for system designers and policy makers by providing insights and generating
design artifacts, and, (2) as part of the DL4LD project, proposing a flexible yet
powerful schema and method for development of a data market place.

6.1 Introduction

The intrinsic and potential value of data in many different aspects of human
society can not be overestimated, from financial [93] to scientific research [61] and
healthcare [146], every important sector is impacted, and arguably potentially
improved in their effectiveness by utilizing data-oriented approaches. Intuitively,
the importance of data-sharing between parties is also rising, which in turns
creates concern about data security, privacy, legal, monopoly and many other
issues, especially in contexts in which parties may not have mutual trust, or may
be even competitors [44]. This context creates the need for governance approaches
that go beyond single organization scenarios.

The idea of Data Market Places (DMPs) is one that addresses these issues.
A DMP is a membership organization in which each member can only perform
actions (such as transferring data and execution of algorithms) based on previously
constructed contractual agreements [171, 145], consortium policies and legislative
regulations (e.g., GDPR), and for specific purposes. Intuitively, such a framework
can induce collaboration and add much needed trust between parties, ensuring

97

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

98 Chapter 6. Example 1: Coordination in MAS via Norms

that their artifacts (data, algorithm, processing power, infrastructure, etc.) will
be utilized only in the intended manner.

Although there are practical works on implementing such system, like for
instance the Mahiru framework [160],low-cost andefficient modelling of a DMP
remains an important (yet overlooked in the literature) challenge to facilitate
the design of a DMP. This chapter utilizes the tools and approaches proposed
in the previous chapters to model a DMP as a Multi-Agent System. Starting
from agreements between participants, the DMP can create services to enforce
control and governance over the flow and utilization of artifacts between actors,
and guiding them through their roles in the consortium, defined by the application
contract, all while ensuring compliance to legislative regulations.

The model of DMPs in this chapter is based on the collective works1 presented
in [171, 145] and earlier ideas of a multi-domain data-sharing infrastructure in
[86] and the Service Provider Group [87]. Furthermore, there have been previous
works that have utilized Agent-Based approaches to model DMPs [60, 174] with a
focus on specifying the model unlike this chapter which mostly is concerned with
the modelling framework.

6.2 Background

To model a complex system as a MAS we must further study the literature on
the connection norms such as contracts and regulations and multi-agent systems.
This connection has been studied extensively in the normative MAS (nMAS) [22].
In a complex system with heterogeneous agents that may have conflicting goals,
norms can provide an efficient way of coordination between agents typically in
the form of agent organizations [114]. Most of the studies in nMAS are concerned
with the theoretical aspects like the interactions between governing norms and
individual agents’ desires and goals; many of which were covered in Chapter 5.

However, there are also works that introduce practical approaches for embed-
ding some degree of control in a MAS by enforcement of norms. An overview of
these approaches can be found in [50], analyzing norm enforcement architectures
based in criteria like supporting automatic enforcement, different levels of norms
that describe actions and/or state of affairs, and dynamicity of the norms, in
the sense that they can be adopted, dropped or changed. They also introduce
practical criteria like execution efficiency, and centralized and decentralized nature
of enforcement.

The authors of [50] also introduce the MaNEA, a norm-enforcing architecture
aimed at controlling norms in open MAS. The MaNEA architecture utilizes
a distributed model of agent organizations that includes norm manager nodes
with prescriptive norms in the form of deontic directives (obligation, permission,
and prohibitions), and norm enforcer nodes that can observe the system, detect

1Conducted in the same research group as this thesis.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 111PDF page: 111PDF page: 111PDF page: 111

6.2. Background 99

violations, and respond to them with punishment/reward methods. Their approach
differs from ASC2 and its normative extensions firstly because they focus on
controlling a MAS as a whole, they assume full information of every action and
message within the system from the perspective of enforcers nodes, while in the
ASC2’s architecture —and arguably in real life– this is not the case. Secondly,
they only take into account prescriptive norms in form of deontic directives, while
this thesis’ approach goes beyond that by also utilizing norms as a coordination
mechanism between agents, using norm representation and reasoning methods as
given external components (and possibly changeable with others).

The authors of [9] introduce an approach called accountability-driven orga-
nization programming technique (ADOPT) to improve accountability within a
MAS; their approach focuses more on the coordination and collaboration aspects
of norms. In a setting in which multiple agents have to collaborate and perform
specific sub-goals to achieve a higher-level goal, they propose the use of organiza-
tions of which each agents firstly has to agree to be a part of, and secondly it has
to agree to specific sub-goals that it will need to perform. This work is close to
ASC2 in that they also assume local nodes in a MAS that rely to agents for what
they are ought to do, but where they only assume the purpose of collaboration,
this thesis also takes into account the prohibitions that each agent may have, i.e.,
what they are ought not to do.

6.2.1 Compliance Management Framework

Another related research domain is the one addressed by Compliance Management
Frameworks (CMF). In any organization, there is always the concern to verify if
the business activities of the organization are compliant with governing rules and
policies. This typically includes encoding the relevant rules into some normative
specification and utilizing a reasoner for automated verification of normative
specifications over business process specifications. There are multiple CMFs
introduced in the literature. In [94, 95] multiple CMF frameworks are studied and
a set of evaluation criteria are introduced for CMFs categorizing the frameworks.
The criteria include: (1) the process life-cycle phase (design, run, and auditing
time) a framework focuses on, and the orientation of the framework (focusing on
formal verification or business oriented); (2) the expressiveness of the normative
specification language, focusing which of the normative constructs the language
supports; (3) how the framework creates the link between business models and
normative specifications; and (4) the level of support a framework with respect to
modeling, linking, compliance checking, and handling violations.

An example of CMF is the COMPAS framework presented in [74] that is
designed for service-oriented architecture-based systems. In COMPAS, Linear
Temporal Logic (LTL) is used to specify compliance requirements of a system
and Business Process Management and Notation (BPMN) to identify the business
process model. Then, formal model-checkers are used for design, run, and auditing

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 112PDF page: 112PDF page: 112PDF page: 112

100 Chapter 6. Example 1: Coordination in MAS via Norms

time verification of the compliance specifications over business process specifica-
tions. Like CMFs, the proposed approach of this thesis is also concerned with
the compliance of a business process (albeit implicit in this work) with relevant
norms. What makes COMPAS –and most other CMFs – different from ASC2’s
architecture is that the focus in a CMF is on one organization and its business
model, however, by modelling the system as MAS, the focus is shifted towards
possible interactions that may happen between multiple different actors with
possibly conflicting goals in the presence of multiple normative sources.

6.3 The Model of DMPs

A DMP is a membership organization in which members are able to share (or
buy/sell) different artifacts such as data, algorithms, and computation power.
The concrete collaboration model i.e., the flow of artifacts and execution of
computations within the DMP is based on predefined contractual agreement
between all members. Given an agreement of collaboration in the form of an
application, the DMP infrastructure should provide services and guidance to
all participants and support them in playing their role in compliance with the
agreement while making sure other participants are also compliant.

Apart from the contractual agreements, a DMP should also make sure that
the activities of all parties are in compliance to general market place rules and
constitutional regulations such as those about privacy (e.g., GDPR). However, this
can also be seen as if the market place itself, and the governing regulatory bodies
(e.g., governments, competent authorities) are already involved in every interaction
and their conditions are (implicitly or explicitly) part of every agreement. A high-
level view of a DMP can be seen in Figure 6.1.

Data sharing applications are at the core of operationalization of a DMP. An
application defines the flow of processes between collaborating participants, from
an organizational standpoint, this translates to defining the duties each participant
has to fulfill and restrictions they have to take into account for the application
to be performed successfully and in a compliant manner. Once an application
is agreed upon by participating actors, there are multiple ways to orchestrate
and schedule required actions of the actors. The simplest approach is to create a
centralized setting, where there is one center that monitors the actions of the actors
and notifies them the next action they have to perform. Although the simplicity
of a centralized approach is desirable, it depends on very strong assumptions.
Firstly, there is the assumption of observability of all actions where it may not
be the case in a real setting. Monitoring a distributed system comes with a cost,
and this cost is higher if there is one central node that is monitoring all of the
system. As opposed to this, distributed and autonomous monitoring, e.g., actors
monitoring their local ad-hoc connections is a much more feasible and scalable
approach. Secondly, it assumes the presence of a fully concretized plan (a series

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 113PDF page: 113PDF page: 113PDF page: 113

6.3. The Model of DMPs 101

Figure 6.1: A high-level view of a Data Market Place

of actions), where in a real setting it may not be the case. Creating fully concrete
plans in a setting with many actions and actors is expensive. Furthermore, actors
may need to be autonomous with respect to how they will perform their part,
e.g., delegating parts of tasks or creating local plans based on higher level partial
plans in case of failures or to just lower costs while still acting compliant to overall
policies. Furthermore, with central planning, the planner node needs to take the
all the internal policies of all participants into account to be effective, but in
reality the actors may require their policies to remain private resulting planning
to be much less feasible.

To solve these issues, the DMP architecture mode proposed in this chapter
utilizes a fully distributed control mechanism, where the centralized market actor
only defines high-level conditional and context-based duties for actors and provides
them with high-level specifications of conditional powers or abilities that they have
to perform those duties. Still, the issue of monitoring and accountability remains,
having each actor only aware of what it should do will negatively effect trust
and cooperation between actors. As it was mentioned in Chapter 5, apart from
letting actors know what they should (and not) do, norms also define expectations
that actors can have from others. For a full distributed monitoring setting, the
proposed architecture utilizes an ad-hoc monitoring approach, where each actor
has expectations, and monitors only the actions in the system that it is also a
part of. In summary, between two actors A and B, if A has a duty to send a
stream of data to B, then B is the only actor that is aware of this duty and has
an expectation of receiving that data stream. Hence, in effect, it is B that is
monitoring A and holding it accountable. This chapter argues that distributed
governance and control, plus an effective logging and auditing mechanism that

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 114PDF page: 114PDF page: 114PDF page: 114

102 Chapter 6. Example 1: Coordination in MAS via Norms

Figure 6.2: DMP Example Scenario

can lead to ex-post enforcement, can be much more effective in complex cyber-
infrastructures than trying to control every aspect of a system with centralized
ex-ante access control mechanisms. To demonstrate this approach, next section
illustrates an example scenario motivated by [171].

6.4 Executable Model of Data Market-Place

In the scenario, there are four actors, Alice, Bob, Charlie, and David. From
these actors, David needs a set of synthesized data (e.g., a trained model) called
final_result, to create this data set, first the algorithm alg1 needs to be executed
on a data set data1 and then the output of alg1 called result1 needs to be used as
the input of the algorithm alg2 to create final_result. The issue is David does
not have any of these data or algorithms, instead, Alice has the two algorithms
and Bob has the data. The other issue is that Alice and Bob do not trust each
other with their data or algorithms (for any reason). However, they both trust
Charlie whom also happens to have the computational infrastructure. Figure 6.2
a possible solution application that can be utilized in this scenario. The steps of
this application are:

1. In any order:

(a) Bob sends data1 to Charlie

(b) Alice sends alg1 to Charlie

2. Charlie executes alg1 on data1 to create result1

3. Charlie sends result1 to Alice

4. Alice executes alg2 on result1 to create final_result

5. Alice sends final_result to David

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 115PDF page: 115PDF page: 115PDF page: 115

6.4. Executable Model of Data Market-Place 103

1 Act send_data

2 Actor source Recipient target

3 Related to data

4 Terminates to_send_data()

5

6 Act compute

7 Actor source Recipient target

8 Related to input, algorithm, reference

9 Terminates to_compute()

10

11 Duty to_send_data

12 Holder source Claimant target

13 Related to data

14

15 Duty to_compute

16 Holder source Claimant target

17 Related to input, algorithm, reference

18

19 Event init_contract

Listing 19: Generic data-sharing contract notions in eFLINT

6.4.1 Implementation of the Model

To implement a model of the system, the idea of normative advisors in Chapter 5
is utilized, using ASC2 agents to model the participants of the DMP, and eFLINT
programs to model the contractual agreements of the DMP.

Contractual Agreements

To implement the norms, we first start with a drastically simplified of the general
eFLINT specification for concepts in the data-sharing contract presented in List-
ing 19. The specification defines two acts send_data and compute that respectively
represent the act of sending a data object (or algorithm) and the act of computing
a result based on input data and an algorithm. There are also two duties that
correspond to performing the mentioned acts. Note that performance of each
act also terminates the corresponding duty. There is also an event defined as
init_contract that signals the start of a data-sharing contract. Note that the
specification is very minimal and generic and not immediately usable, acts do
not specify any side effects except terminating the corresponding duties, also the
init_contract event as it is defined has zero effect on the institutional state. This
is because this specification is only there to define concepts, and each agent at
run-time will get a specialized –filled in or concretized– version of this specification.

To implement the fully distributed control mechanism, each agent will have
its own normative advisor. It is also the goal for each agent to have only access to
its own duties and powers, plus the duties and powers of other agents when they

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 116PDF page: 116PDF page: 116PDF page: 116

104 Chapter 6. Example 1: Coordination in MAS via Norms

are supposed to fully observe them to act as a monitoring point. Building on the
specification in Listing 19, each agent at run-time gets a normative advisor with
a specialized extended contract specification embedded within it. We start with
the simplest specializations, which are David and Bob. Observing the scenario,
Bob has only one duty and act to perform –sending data1 to Charlie – and no
expectations from others while David has no duty or acts to perform while only
having one expectation –Alice sending final_result– from other agents. The two
Listings 20 and 21 respectively present the extended specification for Bob and
David.

Listing 20 illustrates Bob’s specialized contract. Line 1 instructs eFLINT’s
reasoner to include the data-sharing basics specification (Listing 19). Then, line
3 extends the init_contract event, so that at the start of the contract Bob has
minimal required information about the institutional state of the market-place,
i.e., that it has a data set called data1, there are two parties Bob and Charlie
–from the perspective of Bob– denoted as B and C, and that Bob has a power and
a duty to send data1 to Charlie.

1 #require "data_sharing_basics.eflint".

2

3 Extend Event init_contract

4 Creates

5 data("data1"),

6 send_data("B","C","data1"),

7 to_send_data("B","C","data1"),

8 party("B"), party("C").

Listing 20: Bob’s data-sharing contract in eFLINT

Similar to Bob, David also has a simple extension to its contract specification,
presented in Listing 21. It extends the contract initialisation event so that it
defines two parties, Alice and David (A and D), and also creates a power and a duty
for Alice to send final_result to David. As the actor/holder of this power/duty
is Alice, from the perspective of David it becomes an expectation that David has
from Alice, making him a local monitor for this act.

1 Extend Event init_contract

2 Creates

3 send_data("A","D","final_result"),

4 to_send_data("A","D","final_result"),

5 party("A"), party("D").

Listing 21: David’s data-sharing contract in eFLINT

Next is Charlie, with the role to get an algorithm and a data set from two
other parties, perform the computation and return the results to one of them. An

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 117PDF page: 117PDF page: 117PDF page: 117

6.4. Executable Model of Data Market-Place 105

excerpt of Charlie’s contract extension is presented in Listing 22. For Charlie, the
contract initialization is extended (Line 20) so that it results in creation of two
sets of powers/duties: one for Alice to send the algorithm to Charlie and another
for Bob to send the data; both of which are expectations from the perspective of
Charlie. Then, Charlie’s specification also extends the computing act and duty
so that they are conditionally created when the initially expected send_data

are performed (Lines 11 and 15) –more specifically when data1 and alg1 are
available–. The compute act is also extended so that when it is performed with
the correct parameters, it creates result1 (Line 7). Finally, the power and duty
to send result1 to Alice is conditionally created when computation is done
(Lines 1 and 4) –again, more specifically when result1 is available–.

1 Extend Act send_data

2 Holds when source == "C" && target == "A" && data == "result1".

3

4 Extend Duty to_send_data

5 Holds when source == "C" && target == "A" && data == "result1".

6

7 Extend Act compute

8 Creates data("result1")

9 When input && algorithm && input == "data1" && algorithm == "alg1".

10

11 Extend Act compute Holds when source == "C" && target == "A" &&

12 input == "data1" && algorithm == "alg1" &&

13 reference == "result1".

14

15 Extend Duty to_compute

16 Holds when source == "C" && target == "A" &&

17 input == "data1" && algorithm == "alg1" &&

18 reference == "result1".

19

20 Extend Event init_contract

21 Creates

22 send_data("A","C","alg1"), send_data("B","C","data1"),

23 to_send_data("A","C","alg1"), to_send_data("B","C","data1"),

24 party("A"), party("B"), party("C"),

25 reference("result1").

Listing 22: Charlie’s data-sharing contract in eFLINT

Finally, Listing 23 shows an excerpt of Alice’s contract specialization. Contract
initialization is extended (Line 13) so a power/duty is created for Alice to send
alg1 to Charlie. However, this specification also extends the send_data act (Line
4) so that when Alice sends alg1 to Charlie, an expectation for receiving result1

from Charlie is created. The rest of Alice’s specification is similar to Charlie:
power/duty to compute final_result is created when result1 is received (omitted
Lines 9-11) and power/duty to send final_result to David is created when it is

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 118PDF page: 118PDF page: 118PDF page: 118

106 Chapter 6. Example 1: Coordination in MAS via Norms

available after computation (omitted Lines 1-2).

1 Extend Act send_data ...

2 Extend Duty to_send_data ...

3

4 Extend Act send_data

5 Creates

6 send_data("C","A","result1"), to_send_data("C","A","result1")

7 When source == "A" && target == "C" && data == "alg1".

8

9 Extend Act compute ...

10 Extend Act compute ...

11 Extend Duty to_compute ...

12

13 Extend Event init_contract

14 Creates data("alg1"), data("alg2"),

15 send_data("A","C","alg1"),to_send_data("A","C","alg1"),

16 party("A"), party("C"), party("D"),

17 reference("final_result").

Listing 23: Alice’s data-sharing contract in eFLINT

Market Participants

To fully implement the model of the DMP, after defining the contract specifications
for each actor, scripts for intentional agents and normative advisors needs to be
created. As an effect of using dynamic norm specifications and normative advisors,
we can implement the agent script and normative advisor script in a way that will
be usable for all 4 roles. This is immensely important because it means a much
higher usability and as a result scalability of development cycle for the models.
In short, to define new types of interactions and scenarios, no modification to
the agent scripts is required by the modeller. Instead, they can just define new
contracts to create scenarios with any number of agents.

Listing 24 illustrates parts of the ASC2 script for the DMP advisors agent2. The
two plans that are triggered when a duty to_send_data is created or terminated
in the embedded eFLINT reasoner. The advisor then simply relays this update to
its parent, which is a participant agent in the DMP.

For a final piece of the model, Listing 25 illustrates the script for participant
agents that act in the DMP. The first plan (Line 1) is for initiation of the contract,
which simply informs the advisor about this event. There are two plans for actual
data/algorithm level communications between agents; one for sending a data
package (Line 3) and another for receiving a package (Line 7). In both cases, the
agent also informs the advisor about this. The next three plans are triggered by

2More generic parts that have been already presented in Listing 17 are omitted.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 119PDF page: 119PDF page: 119PDF page: 119

6.5. Model Execution and Discussion 107

1 +to_send_data(party(S),party(T),data(D)) =>

2 #tell(Parent,send_data(S,T,D)).

3

4 -to_send_data(party(S),party(T),data(D)) =>

5 #untell(Parent,send_data(S,T,D)).

Listing 24: ASC2 specification of DMP participant’s norm advisor.

the advisor: to inform the agent it has a duty to send some data package to a
target (Line 10), to inform the agent it should expect to observe a transfer of
data, and to inform the agent that a duty to send data has been terminated due
to some observed event.

1 +!init(Advisor) => !inform_advisor(event,init_contract).

2

3 +!send_data(Target,Data) =>

4 #tell(Target,package(Data));

5 !inform_advisor(act,send_data(Self,Target,Data)).

6

7 +package(Data) =>

8 !inform_advisor(Act,send_data(Source,Self,Data)).

9

10 +send_data(S,T,D) : Self == S =>

11 #println("Duty created: " + send_data(S,T,D)).

12 !send_data(T,D).

13

14 +send_data(S,T,D) =>

15 #println("Duty created: " + send_data(S,T,D)).

16

17 -send_data(S,T,D) =>

18 #println("Duty terminated: " + send_data(S,T,D)).

Listing 25: ASC2 specification of a DMP participant

6.5 Model Execution and Discussion

Utilizing the illustrated scripts, an executable model of the DMP can be created.
This is achieved by the method presented in Chapter 4. For each scenario, a
test suite is created with the required type and number of agents. Each market
participant agent is created with the script in Listing 25 and then for each
participant a normative advisor is created with the script in Listing 24 with the

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 120PDF page: 120PDF page: 120PDF page: 120

108 Chapter 6. Example 1: Coordination in MAS via Norms

corresponding eFLINT specification embedded in it. Then, at the start of the
test, an event +!init(Advisor) is sent to each market participant agent where the
Advisor variable is filled with the name of the corresponding normative advisor
agent. Because of the design of ASC2, we can modify different parts of agents
by injecting dependencies. With the specific injected communication layer to the
agents, we can generate different types of diagrams based on the execution of the
system filtered by type of messages, type of agent roles or even just include one
specific agent’s perspective. In the following, some example insights and artifacts
created by execution of the model are presented.

Firstly, Figure 6.3 illustrates a sequence diagram generated by including only
the communications between participant agents (excluding advisors). Intuitively,
this generated diagram is a high-level view of the simple scenario contract and can
be used as a design artifact for a real system. However, as our MAS is scalable to
virtually any number of agents, when the system is bigger, this type of artifact
generation can be a valuable asset for the designers.

Figure 6.3: Sequence diagram of data-package transfers in the DMP scenario

Next, we will focus further on the normative advisors and their interactions
with the agents. For this reason, we choose Charlie as the example case. Figure 6.4
illustrates a sequence diagram consisting of all of Charlie’s communications in
the scenario. Charlie initially starts by telling the advisor that the contract
started, then the advisor informs Charlie that it should expect two data/algorithm
packages from Bob and Alice. When each package arrives, Charlie informs the
advisor about it and the advisor tells Charlie that it should no longer expect
them, however, after both packages it also informs Charlie that about a new duty
towards Alice for a computation. After performing the computation, Charlie
informs the advisor about it, and in response, the advisor informs Charlie about
the termination of the computation duty and creation of a new duty towards Alice
to send the results. After sending the results and informing its advisor, the advisor
updates the internal institutional state and informs Charlie about the termination
of the duty. As it can be seen, while the external communications of this agent
are rather simple, the internal institutional state of the agent is changing rapidly,

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 121PDF page: 121PDF page: 121PDF page: 121

6.5. Model Execution and Discussion 109

which in many real world cases is true: even if a behavioral pattern is simple, the
underlying interactions that result in those behaviors are complex, in this case
the underlying interactions are a legal view over a contractual agreement.

Figure 6.4: Sequence diagram of Charlie’s communications the DMP scenario

Finally, we will focus on the concept of local monitoring, deviations between
the institutional beliefs of agents and how to identify and possibly synchronize
them. The example in Chapter 5 presented agents that have identical norms and
also identical observations. This meant that the agents had identical beliefs about
the institutional state. However, in the DMP example, this is not the case. While
the agents have the same basic concepts in align, each has a specific concretization
of norms that it follows. Also, each agent can only observe what is locally available
to it: the bilateral communications that it is part of, plus any internal actions
that it performs. This has a big effect on accountability in the system, role of
trust, need for monitoring and possibility of delegating tasks.

Based on each agent’s communications with its advisor, we can create the
diagram in Figure 6.5. This figure shows the discrete life-cycle of duties from the
perspective of each agent in the environment. On the bottom there are different

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 122PDF page: 122PDF page: 122PDF page: 122

110 Chapter 6. Example 1: Coordination in MAS via Norms

events that happen in the system (data packages) which mark the changes in agent’s
belief about these duties. As it can be seen, these beliefs are not synchronized
between agents. For example, David expects to receive final_result from Alice
from the moment the contract is initialized. However, Alice has a different view
over this and believes this duty only exists when Charlie has sent result1.

Figure 6.5: Discrete life-cycle of duties, from the perspective of each agent.

This type of deviation in itself is neither desirable nor undesirable, however, in
a complex system it is important that designers are aware of it and can study it.
For example, imagine that Bob fails to send data1 to Charlie, and then Charlie fails
to send result1 to Alice, which means Alice can not compute final_result for
David. Then who should be held accountable from the perspective of David? The
answer will depend on the type of agreement between parties. If all of the parties
have agreed to be accountable for a task only if previous tasks are completed,
then more pre-agreement steps [9] and further monitoring or logging is required in
case of failure for possible ex-post auditing and enforcement. But, in case of full
delegation, one party may accept to be held accountable for all the sub-tasks that
it is delegating to external actors that were not originally part of the agreement
–if that is allowed by the policies–. In this case for example, Alice could have an
agreement with David to deliver final_results, regardless of what happens with
other agents, which means there is no need for any further monitoring as David is
already (legally) protected by the contract in case of failures.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 123PDF page: 123PDF page: 123PDF page: 123

6.6. Conclusion 111

6.6 Conclusion

This chapter explored a more in-depth analysis of models that can be built by
utilizing the tools and frameworks that have been introduced in this thesis. As a
proof of concept, a Data Market Place was chosen as the system under scrutiny,
and a fully distributed model of task allocation was presented in which the
market participants each only get a predefined part of a data-sharing agreement
specialized for their role that can assist them at run-time to both fulfill their
role and coordinate with other participants. To model the participants, the
ASC2 framework was used, while eFLINT was used to model the contractual
agreements. Normative advisors as introduced in Chapter 5 were utilized as the
glue between the institutional world (contract) and extra-institutional world (data
infrastructure).

Although this chapter focused on only modelling the system, in effect, it is not
a big leap to implement this approach in a real system in the future: creating and
deploying dynamic normative micro-services to advise participants in an ad-hoc
or centralized manner and provide them with required information about their
and others’ roles in a distributed application. Automated norm enforcement and
ensuring compliance through explicit and formal representation of norms has many
benefits, such approaches can assist both policy-makers and system designers by
simplifying their view resulting in a more scalable development process, increase
trust between parties and reduce risks that arise from (intended or unintended)
non-compliant behaviors.

While this chapter did not explore the addition of domain, consortium, market,
and national policies and legislation, the approach is fully compatible with includ-
ing external overarching policies. For example, in [157] shows how data protection
rules (e.g., GDPR) and system level policies can be interconnected. However, this
is not a simple matter even from a legal perspective and relations between norms
at different levels and their priorities and effects can be much more complex [92],
and they become even more complicated in the context of a cyber-infrastructure
that includes large volumes of data, which makes the goals of this thesis, being
able to model such interactions much more important.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 124PDF page: 124PDF page: 124PDF page: 124

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 125PDF page: 125PDF page: 125PDF page: 125

Chapter 7

Example 2: Qualitative, Quantitative,
and Normative Reasoning

This chapter illustrates an example model built utilizing the ASC2 framework
and its extensions, including preference reasoning and normative advisors. The
example was chosen intentionally to be maximally different from what have been
presented until this point in the thesis to elaborate on the diverse applications of
the approach. More specifically, the agents in this example have to make decisions
based on adopted external norms and internal preferences that are dependent on
quantitative valuations in the context of the environment.1

7.1 Introduction

This example case aims to study the extent AI systems can operate within
applicable legal constraints, focusing on the development of autonomous military
devices constrained by design by International Humanitarian Law (IHL).2 This
is a relevant use case also because there is a contemporary research debate in
which some scholars argue that incorporating many principles of IHL, such as
distinction, proportionality, and precautions, into an AI is impossible [51, 154],
while some other commentators point out that not only it is possible, but it may
be a desirable approach as a well-functioning military AI can possibly provide
better performance and increased respect for the law [59, 103].

1The material presented in this chapter refines and extends elements presented in [178]. The
contribution of the author to this paper has been mainly in the encoding and implementing
the norms, designing agent scripts, agent preferences, and the scenarios. The original model of
International Humanitarian Law (IHL) is formally developed by the other co-authors Zurek and
Kwik [178], as part of the DILEMA (https://www.asser.nl/dilema/) project.

2Development and utilization of autonomous military devices, fully or partially controlled by
artificial intelligence is a controversial idea, charged with moral, legal, and ethical issues, which
this thesis does not aim, nor try to address.

113

https://www.asser.nl/dilema/

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 126PDF page: 126PDF page: 126PDF page: 126

114Chapter 7. Example 2: Qualitative, Quantitative, and Normative Reasoning

This chapter is both a summary and an extension (focused more on the
modelling approach rather than the system and laws being modelled) of the
work presented in [178], and introduces a formal encoding of IHL rules and
their implementation with the use of ASC2 and eFLINT/Prolog languages. The
general structure and model of a decision-making mechanism for an IHL-compliant
military autonomous devices that the models in this chapter are based on were
first introduced in [109].

7.2 International Humanitarian Law rules

International humanitarian law is the set of rules governing all military operations,
including weapons release [80]. These principles include guaranteeing that the
weapon is sufficiently accurate so as to not be indiscriminate, that attacks are
proportionate, and all necessary precautions are taken to spare the civilian popu-
lation. Such legal requirements must be complied with even if some or all of these
decisions are delegated to autonomous devices, and commanders envisaging the
use of such devices must ensure that these systems can perform all the required
legal tests correctly [23].

Main IHL principles studied in this section are related to targeting and
weaponeering, which are implemented through a series of legal tests during the
targeting process [72, 165, 47]. The authors of [109] structured and streamlined
these legal tests for implementation by a hypothetical military autonomous de-
vice. In [178], the discussion is limited to the implementation of tests which are
commonly described as the most difficult tasks for an artificial agent to perform,
namely those which involve the incidental harm (IH) and military advantage (MA)
variables [23]. The tests in question are the proportionality rule and the two
civilian harm minimisation rules,3.

7.3 The Model

The basis of the model is in the analysis of various relations between MA and
IH which respectively are expressed by two values: vMA representing Military
Advantage and vCIV representing civilian well-being. For better expressivity, the
value vCIV is used which is inversely proportional to IH, vCIV = 1/vIH .

The model within the agents can be expressed as < D, V, p >, where D =
{dx, dy, ...} represents the available (attack) decisions for the autonomous device.
4 In this definition, V is the set of evaluations of the results of decisions as

3Articles 57(2)(a)(iii), 57(2)(a)(ii) and 57(3) of [2] respectively.
4How these decisions have been distinguished and represented (e.g. they can be seen as BDI

goals) are not further examined here as it will not affect the rest of the model which is the focus
in this chapter. It is also assumed that the certainty of the outcomes of those decisions (e.g.,
destruction of a given tank or bridge nearby) can be predicted.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 127PDF page: 127PDF page: 127PDF page: 127

7.3. The Model 115

V = {V (dx), V (dy), ...} where each evaluation is expressed with two values in
the form of V (d) = {vCIV (d), vMA(d)}. Every evaluation is expressed by a real
number between -1 and +1 (e.g.: vCIV (dx) = 0, 75) which represents the expected
satisfaction5 of the respective variable as the result of the decision. Finally, p
is the proportionality coefficient, a real number declared in advance, represents
the level of acceptable (from the point of view of IHL) relations between military
advantage and incidental harm to fulfil the Proportionality test.

Next, we introduce four different definitions that are necessary for legal tests
based on vMA and vCIV :

Definition 7.1 (Equal Military Advantage Predicate (EQMA))
The value EQMA(dx, dy) defines whether two different decisions satisfy vMA

to the same level. If by dx and dy we denote two different decisions, then by
EQMA(dx, dy) we denote that both decisions satisfy MA to the same level.

(vMA(dx) = vMA(dy)) ⇒ EQMA(dx, dy)

Definition 7.2 (Less Civilian Protection Predicate (LESSCIV))
The value LESSCIV (dx, dy) defines whether one of two decisions satisfy vCIV to
a greater extent than the other. If by dx and dy denote two different decisions,
then LESSCIV (dx, dy) denotes that dx satisfies value vCIV to a lower extent than
dy.

vCIV (dx) < vCIV (dy) ⇒ LESSCIV (dx, dy)

Definition 7.3 (Proportionality Predicate (PROP))
The value PROP (dx) defines whether the level of satisfaction of the well-being of
civilians (vCIV) by results of a given decision, multiplied by a certain coefficient,
is higher than the level of satisfaction of military advantage (vMA) by the same
decision. In other words, defines whether military advantage is proportionate to a
change in the well-being of civilians.

vMA(dx) ≤ p ∗ vCiv(dx) ⇒ PROP (dx)

Definition 7.4 (More Relative Advantage Predicate (MOREREL))
The value MOREREL(dx, dy) defines whether the relative satisfaction of MA and
IH by one decision is higher than another one. Then MOREREL(dx, dy) denotes
that the relation of MA to IH for dx is higher than it is for dy.

vMA(dx) ∗ vCiv(dx) ≥ vMA(dy) ∗ vCiv(dy) ⇒ MOREREL(dx, dy)

Finally, based on these predicates a set of legal rules representing tests necessary
to examine whether a given decision is legal from the point of view of IHL are
introduced:

5In the actual implementation of the model each decision can have multiple possible outcomes
with different probabilities, and the expected satisfaction is calculated based on those values.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 128PDF page: 128PDF page: 128PDF page: 128

116Chapter 7. Example 2: Qualitative, Quantitative, and Normative Reasoning

Definition 7.5 (Article 57(3) test)
If more than one target is viable, and they produce comparable MA, then the target
with the lowest IH should be selected. The predicate DT (dx) represents this legal
test, where dx is the decision which satisfies the test:

∃dx∈D¬∃dy∈D(EQMA(dx, dy) ∧ LESSCIV (dx, dy)) ⇒ DT (dx)

Definition 7.6 (Proportionality test)
The predicate DP (dx) defines that decision dx is proportional with respect to its
military advantage and incidental harm.

PROP (dx) ⇒ DP (dx)

Definition 7.7 (Minimisation of incidental harm)
Predicate DMH(dx) defines that a decision dx passes the minimisation test with
respect to the incidental harm it will cause.

∃dx∈D∀dy∈D(MOREREL(dx, dy)) ⇒ DMH(dx)

A given targeting decision will be coherent with IHL if all the above tests will
be fulfilled, therefore on the basis of all the defined earlier predicates we can create
a rule describing whether a given decision will follow IHL.

Definition 7.8 (Rule of IHL)
The predicate DAV (dx) denotes that a decision dx fulfills the requirements of being
a legal decision in accordance to IHL if we have DT (dx), DP (dx), and DMH(dx).

DT (dx) ∧DP (dx) ∧DMH(dx) ⇒ DAV (dx)

7.4 Decision-making

The decision-making of the military device can be any arbitrary mechanism as
long as the final decision dx passes all the tests meaning we have DAV (dx). For
example, the decision-making mechanism can choose, from the set of available
decisions which fulfil IHL rules, the one which brings about the highest military
advantage. Let Decisions = (D,≥) be a total ordered set representing ranking
of decisions. The basis of this ordering is military advantage, assuming that
commanders would prefer decisions which provide the greatest expected military
utility from all lawful alternatives:

∀dx,dy∈D(DAV (dx) ∧DAV (dy) ∧ (vMA(dx) ≥ vMA(dy)) ⇒ (dx ≥ dy) (7.1)

This means that if the set DAV is empty (no decision remains), then this
means that there is no possibility to make an attack which satisfies the set military
goals and which is also coherent with IHL. If there is one decision satisfying the

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 129PDF page: 129PDF page: 129PDF page: 129

7.5. Example Model of Normative Autonomous Devices 117

requirements only, this decision becomes the final one. If more than one decision
satisfy the requirements, they are ordered on the basis of expected military
advantage. The system, on the basis of the ordering Decisions can choose the
best decision (the action bringing about the highest MA) and follow that decision
(fulfill the plan).

7.5 Example Model of Normative Autonomous

Devices

In this section, we explore scenarios including models of imaginary autonomous
military devices (drones) that follow the aforementioned IHL principles in action.
Then, a simple implementation of the devices in the scenarios are presented that
utilize ASC2 and eFLINT.

7.5.1 Scenario

We present below the overarching scenario on the basis of which we are going to
test our mechanism:

A commander from nation Alpha is given the task to capture a city
defended by nation Beta, which uses the city’s smart sensors to collect
data of Alpha’s troop movements and plan effective counterattacks.
For each district (scenario), data is collected at a data center before
being sent through relay stations to Beta’s headquarters. Aiming
to disrupt Beta’s intelligence network, Alpha’s commander releases
Cleopatra drones which are given the task to locate the data centers or
relay stations (‘network points’) and destroy one of them, which would
disable the data flow in that district. Network points can be located
inside civilian buildings, on rooftops or in fields. The drones are able to
identify civilians and enemy soldiers around potential target locations
and take this information into consideration for their decision-making.
Cleopatras carry two types of ammunition, ‘light’ and ‘heavy’ missiles.
Heavy missiles are necessary for attacking targets inside buildings, but
cause more damage to their surroundings. The risk of misidentification
or released missiles missing the target is negligible.

On the basis of the above scenario we assume that a particular drone in a given
situation can make a decision concerning destroying one of the network points
namely relay stations (RelSta) or data-centers (DCenter), with one of two different
kinds of missiles (heavy and light), giving 2n possible decisions to examine. In
order to examine the mechanism, we assumed four sub-scenarios with different
collateral effects that can be predicted by the device (see Table 7.1). Each table

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 130PDF page: 130PDF page: 130PDF page: 130

118Chapter 7. Example 2: Qualitative, Quantitative, and Normative Reasoning

presents a different district or scenario (A, B, C, and D) where each row presents
a different attack decision. Each decision, apart from the target and missile type,
shows the location which is relevant as only heavy missiles are effective against
buildings. The number of enemy soldiers neutralized as a side-effect of the attack
is illustrated in the ‘Sldrs’, the number of collateral civilian lives and buildings
are also presented in the columns ‘CL’ and ‘CB’. The corresponding vMA and
vCIV values are calculated based on these parameters. The military advantage of
all targets (network devices) is the same, given the missile type is viable in that
location. However, there is a variation of vMA in each row based on the number
of enemy soldiers. The vCIV value is based on the number of civilian buildings
and lives. Both values are also affected by a random modifier and rounding in
each decision.

The full analysis of the operations in each district is presented later on, but in
summary to rationalize four different scenarios, District A is a generic scenario
where there are not a lot of civilians, however, only one option is legal. In
District B, there are many civilians around and all options will result in high
collateral damages. In District C, an extremely high-value target is present
(Beta’s president, indicated by ‘P’) which can be neutralized with a heavy missile
at the cost of many civilian casualties. Finally, in District D, like A, there are
not many civilians around, but more than one option is legal, so it will be agent’s
decision-making that needs to select one.

7.5.2 Implementation

This section presents the basics of the implementation of the experiment. The proof
of concept is implemented with the approach presented in 5 with two components:
(1) an intentional agent that encapsulates the objectives and procedural knowledge
that is implemented utilizing ASC2 framework and (2) a normative advisor that
encompasses the normative aspects. Using intentional agents and normative
advisors is advantageous in this case because of the separation of the analysis
of legality of the decision from making the decision itself. Such a separation
is important because it preserves the required level of transparency concerning
the IHL compliance: in particular, it allows for clear understanding why a given
decision fulfills a particular IHL rule.

The IHL rules in normative advisors are implemented twice with two languages,
once with eFLINT and once with Prolog. The choice to use Prolog was taken in the
process of implementation, because it turned out that eFLINT’s current version
is not optimized for this specific encoding which resulted in low performance.
However, as the rules are already encoded in logical form, Prolog is an intuitive
choice. This extra step is explicitly presented in this chapter to illustrate the
versatility and modularity of the normative advisors and how they are agnostic
towards specific the norms framework.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 131PDF page: 131PDF page: 131PDF page: 131

7.5. Example Model of Normative Autonomous Devices 119

1 % Beliefs, Rules

2 viable(D) :- pass_ihl_rules(D).

3

4 % Preferences

5 +!engage_viable_target(D1) >> +!engage_viable_target(D2) :-

6 target(D1) >> target(D2).

7 target(D1) >> target(D2) :-

8 evma(D1,V1) && evma(D2,V2) && V1 > V2.

9

10 % Plans

11 % P1

12 +!engage() =>

13 !engage_target(D).

14 % P2

15 +!engage_target(D) =>

16 !engage_viable_target(D).

17

18 % Internal Plans

19 % P3

20 @internal @preferences

21 +!engage_viable_target(D)

22 : target(T) && viable(D)

23 => #log("targeting: " + D);

24 #initiate_attack(D).

25 % P4

26 @internal

27 +!engage_viable_target(D)

28 : not viable(D)

29 => #log("Not a viable target: " + D).

30

31 % Sync data with advisor

32 +data(Fact) => #tell("IHLAdvisor", Fact).

33 -data(Fact) => #untell("IHLAdvisor", Fact).

Listing 26: ASC2 implementation of IHL compliant device

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 132PDF page: 132PDF page: 132PDF page: 132

120Chapter 7. Example 2: Qualitative, Quantitative, and Normative Reasoning

Table 7.1: Districts A, B, C, and D: Sample decision lists

District Dcsn Target Location Sldrs Msl type CB CL vMA vCIV

A 1 RelSta1 roof 0 heavy 1 6 0.5 0.4
A 2 RelSta1 roof 0 light 1 2 0.5 0.6
A 3 RelSta2 field 5 heavy 0 5 0.6 0.7
A 4 RelSta2 field 5 light 0 2 0.6 0.8
A 5 DCenter building 5 heavy 2 10 0.6 0.2
A 6 DCenter building 5 light 1 4 0.05 0.5

B 1 RelSta1 roof 0 heavy 3 10 0.5 0.15
B 2 RelSta1 roof 0 light 1 6 0.5 0.4
B 3 RelSta2 building 0 heavy 3 15 0.5 0.1
B 4 RelSta2 building 0 light 1 2 0.05 0.6
B 5 DCenter building 5 heavy 2 10 0.6 0.2
B 6 DCenter building 5 light 2 4 0.05 0.5

C 1 RelSta1 field 0 heavy 0 5 0.5 0.7
C 2 RelSta1 field 0 light 0 2 0.5 0.8
C 3 RelSta2 building 5 heavy 3 15 0.6 0.1
C 4 RelSta2 building 5 light 1 2 0.05 0.6
C 5 DCenter building 50+P heavy 4 150 0.95 0.01
C 6 DCenter building 5 light 1 4 0.05 0.5

D 1 RelSta1 roof 0 heavy 1 6 0.5 0.4
D 2 RelSta1 roof 5 light 0 4 0.6 0.75
D 3 RelSta2 field 5 heavy 0 5 0.6 0.7
D 4 RelSta2 field 0 light 0 1 0.5 0.9
D 5 DCenter building 5 heavy 2 10 0.6 0.2
D 6 DCenter building 5 light 1 4 0.05 0.5

Drone (Intentional) Agent

The drone’s intentional agent’s script implementation as a BDI agent can be seen
in Listing 26. The drone has one inference rule (line 2) specifying a target is
viable if it passes IHL rules defined by predicate pass_ihl_rules. The agent
itself does not define when a decision passes IHL rules, which keeps it agnostic
towards specific rules; instead, this information is fed to it by the advisor. Next,
there are two preference statements encoded in CP-Nets that are an encoding of
formula 7.1. These preferences are used to make decisions between targets, stating
that agent will prefer targets with higher evma (lines 4-6). The first statements
specify that when the agent is engaging a viable target, “it prefers to engage
a more preferred target”, this is an example of nested preferences introduced
in Chapter 3. The second statement defines that a target with higher evma is
preferred with no context. Also note that the preference statements do not need
to take into account the IHL rules, making them far more modular.

The plans P1 and P2 are the main plans for external events, P1 can be used
to respond to the event of achieving engage, meaning engage some target without
specifying any specific one that when committed will simply adopt an abstract

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 133PDF page: 133PDF page: 133PDF page: 133

7.5. Example Model of Normative Autonomous Devices 121

sub-goal of !engage_target(D) where the parameter D is a free variable; note that
this is an example of an abstract goal from Chapter 3 that will be grounded later
on. Plan P2 matches with the event engage_target(D) where D can be either a
free variable or a grounded one which will make it a concrete goal; the body of P2
simply has a sub-goal of !engage_viable_target(D).

The two internal6 plans P3 and P4 are both relevant for the event or goal of
engage_viable_target(D). In the case of P3, it is applicable when viable(D) is
true according to agent’s beliefs, and, vice-versa, P4 is relevant when this is not
the case. Note that in P3, if the parameter D is grounded then it is checked if
viable(D) can be proven, however, if D is a free variable, the agent tries to find the
most preferred substitution for D in its beliefs that viable(D) is true for, the most
preferred here is determined by the preference rules in lines 4-6 as the one with the
highest evma. This means the agent can handle the two main objectives of finding
a viable target, or, checking if an already specified target is viable. The bodies
of P3 and P4 are intuitive, P3 initiates an attack and P4 just logs the failure.
Intuitively, in a more realistic implementation there should be further plans to
work around the failure, e.g., by changing the requirements of what constitutes as
a viable target by adding new rules.

The last two plans are simple information relay plans that allow the agent
to send any new data (facts from the normative perspective) to the advisor to
keep its information up-to-date with the agent’s observations. Note that while
here there are only simple one-to-one synchronization plans, this process can be
extended with any arbitrary qualification process that maps the observations of
the agent into normative facts.

eFLINT Powered Normative Advisor

IHL in eFLINT Listing 27 shows the excerpt of an eFLINT specification for
our running example. This specification shows only a small subset of what eFLINT
can encode. The script instead defines multiple types of facts, some atomic ones
like target and vma, some composite ones like outcome and the rest are derived
facts. Some examples are: In line 5 the fact evciv(target,value) which derives
the expected value of civilian well-being for a target from all the possible outcomes
of that target. In line 11 the fact proportionate(target) which is derived from
the proportionality formula (Definition 7.3). Fact dp(target) in line 18 defines
proportionality test (Definition 7.6), fact dt(target) in line 21 defines Article
57(3) test (Definition 7.5), fact dmh(target) defines the harm minimization test
(Definition 7.7), and finally in line 29, fact dav(target) holds when four facts dp,
dt, dmh, and, dtr holds for that target (Definition 7.8). Note that eFLINT by
design includes a transition system that on every update proactively searches for
all the possible facts (or acts, or duties) that can be derived and creates them and

6Internal means that the agent will not adopt these goals as an external event.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 134PDF page: 134PDF page: 134PDF page: 134

122Chapter 7. Example 2: Qualitative, Quantitative, and Normative Reasoning

1 // Composite Fact Types

2 Fact outcome Identified by target * vciv * vma * probability

3 ...

4 // Derived and Inferred Facts

5 Fact evciv Identified by target * value

6 Derived from evciv(target,

7 value(Sum(Foreach outcome :

8 (outcome.vciv * outcome.probability) When

9 outcome.target == target) / 100))

10 ...

11 Fact proportionate Identified by target

12 Holds when

13 evciv(target,value) &&

14 evma(target,other-value) &&

15 proportionality-coefficient(coeff-value) &&

16 other-value <= ((value * coeff-value) / 100)

17 ...

18 Fact dp Identified by target

19 Holds when proportionate(target)

20

21 Fact dt Identified by target

22 Holds when !(Exists other_target : other_target != target &&

23 eqma(target,other_target) && lessciv(target,other_target))

24

25 Fact dmh Identified by target

26 Holds when !(Exists other_target : other_target != target &&

27 !morerel(target,other_target))

28 ...

29 Fact dav Identified by target

30 Holds when

31 dp(target) && dt(target) && dmh(target) && dtr(target)

Listing 27: Excerpt of IHL encoded in eFLINT DSL

then as it will be shown in the following they are reported to the advisor agent.

Advisor in ASC2 The normative advisor agent script specialized for IHL rules
implemented in eFLINT (Listing 27) is illustrated in Listing 28, the first six plans
(lines 1-8) can be utilized to communicate with the eFLINT instance within the
agent to check if an act is enabled, to perform an act, or to check if a fact holds
true. Although these are enough for the intentional part of the device to check if a
target passes all the tests – e.g., by querying ?holds(dav(D))–, we will take a more
proactive approach. The last 4 plans (lines 10-13) illustrate this, they are plans
that tell the normative advisor to report specific updates within the normative
state of the environment back to the device, namely assertion and retraction of
facts dav and evma. Furthermore, the plans in lines 10 and 11 also have an extra
qualification step relaying that the fact dav counts as the fact pass_ihl_rules.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 135PDF page: 135PDF page: 135PDF page: 135

7.6. Model Execution and Discussion 123

This allows for modular design as the intentional part of the device does not need
to know the specific rules in IHL, meaning even if IHL rules are changed, only
this qualification rule needs to be updated and not the intentional agent.

1 +?permitted(A): enabled(A) => #respond(true).

2 +?permitted(A) => #respond(false).

3

4 +!perform(A): enabled(A) => #perform(A).

5 +!perform(A) => #coms.inform(Source, failed(A)).

6

7 +?holds(A): holds(A) => #coms.respond(true).

8 +?holds(A) => #coms.respond(false).

9

10 +dav(D) => #tell("Device", pass_ihl_rules(D)).

11 -dav(D) => #untell("Device", pass_ihl_rules(D)).

12 +evma(D,V) => #tell("Device",evma(D,V)).

13 -evma(D,V) => #untell("Device",evma(D,V)).

Listing 28: ASC2 implementation of IHL eFLINT Powered advisors

Pure ASC2 Advisor

The alternative approach to create the IHL advisor is to use pure ASC2 script
which is illustrated partially in Listing 29. This is possible because ASC2 agents
already have an internal Prolog engine embedded in them. Alike to the eFLINT
specification, lines 6, 13, 15, 21, and 25 respectively represent proportionality
formula (Definition 7.3), proportionality test (Definition 7.6), Article 57(3) test
(Definition 7.5), harm minimization test (Definition 7.7), and finally, overall
passing of all other tests (Definition 7.8). The main difference from the eFLINT
implementation is that unlike before, Prolog fact are not proactively analyzed
and queries should be triggered externally, in this case the advisor agent has two
plans (lines 28 and 32) that when an outcome for a target (decision) is asserted
or retracted. As a result, the agent will then adopt two goals to firstly update
the intentional agent about newly evciv and evma values for that target (lines
36-40), and then also determine if this target passes all the tests (or not) simply
by checking if the query dav(D) holds (or not) according to its belief base, and
relay the result to the intentional agent (lines 42-43 and lines 45-46).

7.6 Model Execution and Discussion

To run the experiments, approaches detailed in Chapter 4 are utilized, where
each scenario is implemented in a test suite; the full implementation of the agents

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 136PDF page: 136PDF page: 136PDF page: 136

124Chapter 7. Example 2: Qualitative, Quantitative, and Normative Reasoning

1 % Rules

2 evciv(D,V) :-

3 findall(VCIV*P,outcome(D,VCIV,VMA,P),VCIVLIST) &&

4 sumlist(VCIVLIST,V).

5 ...

6 proportionate(D) :-

7 evma(D,EVMA) &&

8 evciv(D,EVCIV) &&

9 prp(Prp) &&

10 PEVCIV is EVCIV * Prp &&

11 EVMA =< EVCIV.

12 ...

13 dp(D) :- target(D) && prop(D).

14

15 dt(D1) :-

16 target(D1) &&

17 forall(

18 target(D2),

19 (D1 !== D2 && eqma(D1,D2) && lessciv(D1,D2)) -> false || true).

20

21 dmh(D1) :-

22 target(D1) &&

23 forall(target(D2), (D1 !== D2 && not morerel(D1,D2)) -> false || true).

24

25 dav(D) :- dt(D) && dp(D) && dmh(D).

26

27 % Plans

28 +outcome(D,_,_,_) : target(D) =>

29 !update_values(D);

30 !update_dav(D).

31

32 -outcome(D,_,_,_) : target(D) =>

33 !update_values(D);

34 !update_dav(D).

35

36 +!update_values(D) : evciv(D,EVCIV) && evma(D,EVMA) =>

37 #coms.untell("IHLDevice",evciv(D,_));

38 #coms.untell("IHLDevice",evma(D,_));

39 #coms.tell("IHLDevice",evciv(D,EVCIV));

40 #coms.tell("IHLDevice",evma(D,EVMA)).

41

42 +!update_dav(D) : dav(D) =>

43 #coms.tell("IHLDevice",pass_ihl_rules(D)).

44

45 +!update_dav(D) : not dav(D) =>

46 #coms.untell("IHLDevice",pass_ihl_rules(D)).

Listing 29: ASC2 implementation of IHL in Prolog Powered Advisors

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 137PDF page: 137PDF page: 137PDF page: 137

7.6. Model Execution and Discussion 125

and test scenarios is publicly available online7. In each case, an instance of the
intentional agent plus an instance of an advisor agent is created. Then, a list of
available decisions with their evaluations for each district as presented in Table 7.1
is sent to the intentional agent sequentially. After the last decision is sent, the
system is triggered to perform the decision-making. Then, the agent inspects the
norms instance embedded in the advisor to see which facts are present. In the
example, each decision is identified by the target name (e.g., RelSta1) and the
missile type (e.g., heavy) and a proportionality factor of 1 is used (p = 1).

7.6.1 Execution Results

The results of the IHL compliance analysis are presented in Table 7.2, each district
or scenario in a separate sub-table. In the following, each scenario is analysed by
heightening its interesting points.

District A In District A, only decision number 4 satisfies all of the requirements.
Decisions 1 and 5 are not proportional as their evMA outweighs their evCIV , while
decisions 1, 3, and 5 do not meet the Article 57(3) test requirement because for
each of them there is at least another decision with the same evMA but a higher
evCIV . Finally, decisions 2, 6 do not meet the minimization of incidental harm
requirement because there is another available decision, namely 4 that has a higher
relative satisfaction of military advantage and incidental harm, meaning only
decision 4 is compliant to IHL.

District B In District B, there are no compliant decisions, what makes this
scenario interesting is the interaction between decisions 2 and 4. Decision 4
does not satisfy the minimization of incidental harm rule, as there exists another
decision, namely 2, that has a higher relative satisfaction of military advantage
and incidental harm. However, decision 2 is not proportional itself, meaning no
compliant decisions exist in this scenario.

District C In District C, we have decision 5 that results in a very high evMA

and a very low evCIV , in effect this is an operation that brings about a lot of
military advantage but a high cost. Intuitively, this decision is not satisfying
proportionality and minimization of incidental harm requirements, meaning it is
not compliant to the IHL rules.

Ditrict D In this district, there are two decisions that satisfy all the requirements,
meaning from the perspective of the IHL advisor agent they are both legal. This
results in the need for the intentional agent to make a decision. The preference
Formula 7.1 as encoded in Listing 26 lines 5-8 is used by the intentional agent to

7https://github.com/mostafamohajeri/jurix2022-ihl-devices

https://github.com/mostafamohajeri/jurix2022-ihl-devices

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 138PDF page: 138PDF page: 138PDF page: 138

126Chapter 7. Example 2: Qualitative, Quantitative, and Normative Reasoning

Table 7.2: Decision Analysis

District Decision Target Msl type evMA evCIV DT DP DMH DAV

A 1 RelSta1 heavy 0.5 0.4 � � � �
A 2 RelSta1 light 0.5 0.6 � � � �
A 3 RelSta2 heavy 0.6 0.7 � � � �
A 4 RelSta2 light 0.6 0.8 � � � �
A 5 DCenter heavy 0.6 0.2 � � � �
A 6 DCenter light 0.05 0.5 � � � �

B 1 RelSta1 heavy 0.5 0.15 � � � �
B 2 RelSta1 light 0.5 0.4 � � � �
B 3 RelSta2 heavy 0.5 0.1 � � � �
B 4 RelSta2 light 0.05 0.6 � � � �
B 5 DCenter heavy 0.6 0.2 � � � �
B 6 DCenter light 0.05 0.5 � � � �

C 1 RelSta1 heavy 0.5 0.7 � � � �
C 2 RelSta1 light 0.5 0.8 � � � �
C 3 RelSta2 heavy 0.6 0.1 � � � �
C 4 RelSta2 light 0.05 0.6 � � � �
C 5 DCenter heavy 0.95 0.01 � � � �
C 6 DCenter light 0.05 0.5 � � � �

D 1 RelSta1 heavy 0.5 0.4 � � � �
D 2 RelSta1 light 0.6 0.75 � � � �
D 3 RelSta2 heavy 0.6 0.7 � � � �
D 4 RelSta2 light 0.5 0.9 � � � �
D 5 DCenter heavy 0.6 0.2 � � � �
D 6 DCenter light 0.05 0.5 � � � �

achieve this. According to these preference statements, a decision with a higher
evMA shall be selected, which in this case is decision 2.

7.6.2 Discussion

Although our normative reasoning mechanism is relatively simple, the results
obtained (even for controversial cases) are correct. Note that although in the case
of District A and District C there is one lawful decision only (in District B there
no lawful decisions at all), there are no formal or technical restrictions concerning
a greater number of lawful decisions as is the case in District D, however, such
situations are rather seldom, because they require the same relation between
IH and MA for two or more different decision (unless there is some degree of
approximation involved where values are considered almost the same). The choice
amongst available options as it was presented (decisions which are IHL-compliant)
is made by a decision mechanism on the basis of the level of vMA.

The problem of balancing was widely discussed in a number of AI and Law
papers and legal case-based reasoning in particular. In legal CBR, the objects
of comparison are either dimensions (e.g. [15]) or values (e.g. [13, 89]). The key

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 139PDF page: 139PDF page: 139PDF page: 139

7.6. Model Execution and Discussion 127

difference between our model and the existing ones is in the level of abstraction:
both VMA and VCIV have a very abstract character, especially in comparison to
dimensions like number of disclosures, income, or days of absence in a country.
An important difference also lies in the absolute representation of the level of
satisfaction of values, whereas in other models of balancing, the levels of values’
promotion was represented in a relative way (in a comparison to other decision,
state of affairs, etc. e.g. [89, 116]). Moreover, in contrast to many argumentation
or legal reasoning models [14, 175], values in our model are not an external element
of a reasoning process allowing for solving conflicts between arguments, but they
are an element of a legal rule itself. The simplicity of our model, however, shows
that the critical point of the reasoning process is not located in the legal reasoning,
but in the calculation of the specific relations between vMA and vCIV . Such an
observation allows us to derive a more general conclusion: the key difficulty of
targeting compliance testing lies not in the legal reasoning and balancing itself,
but in the process of evaluating the available options.

In practice, obtaining vMA and vCIV can be seen as a classification or regression
task, which can be expressed as assigning numbers (representing vMA and vCIV) to
particular decisions (represented by their specific parameters). The key question is
whether the creation of such a regression mechanism is feasible at all. Answering
this question will be an important topic for future research.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 140PDF page: 140PDF page: 140PDF page: 140

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 141PDF page: 141PDF page: 141PDF page: 141

Chapter 8

Conclusions and Future Work

Modelling norm-governed cyber-infrastructures can be done via multiple ap-
proaches, investigated in different research communities. In this thesis, however,
the focus was on utilizing agent-based programming to model the system as a
collection of autonomous components, that are individually modelled as either
intentional agents or as software/hardware infrastructural components. In this
Chapter, the motivations that drive this research are reiterated. Then, the work
presented throughout the previous chapters is summarized. Next, the achieve-
ments of the dissertation are reorganized by assessing the present work against
the research questions described in the introduction, all in identifying the current
limitations. Finally, possible future research directions are highlighted.

8.1 Motivation

Governance refers to processes, and structures through which organizations, soci-
eties as a whole, and actors within them are regulated and participate to regulatory
and regulative activities. Governance includes mechanisms by which decisions
are made, normative relations are defined, authority is exercised, and actions are
taken to achieve goals and fulfill responsibilities and expectations.

Policies and policy-making play a crucial role in governance. Policies consist of
sets of rules, regulations, and procedures addressing various actors, guiding their
decision-making and ultimately their behavior. They outline the objectives, values,
and behavioral patterns that need to be followed to achieve desired outcomes,
promote consistency, coherence, and effective coordination of individual actors’
behavior. Policies can cover various areas such as legal compliance, ethical
standards, operational procedures, resource allocation, and risk management.

Policy-making in the data-sharing domain, as well as in the broader software
domain, is becoming increasingly important in the contemporary world. As
software systems are getting more involved and integrated in societies, there
is an increasing need for governance actions to make sure that these systems

129

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 142PDF page: 142PDF page: 142PDF page: 142

130 Chapter 8. Conclusions and Future Work

are regulated in accordance with agreed societal norms. This entails a need for
approaches to make policies for software systems effective. However, there are
many issues that challenge governing software systems, including AI. The number
of AI systems has rapidly increased over the last few years, and lack of transparency,
concerns about privacy, and other legal and ethical issues have increased the need
for effective policies to control AI and more generally IT-infrastructures, including
data-sharing systems. This dissertation focuses on this issue, exploring challenges
and approaches for policy-making addressing social systems that include both
social and software actors, and are governed by a set of regulations.

Modelling is one of the central tools utilized in policy-making. Models can
give insight about a system and assist in predicting the trajectory of that system
in the future. Agent-based modelling in particular is a powerful tool for policy-
making, as such models start from defining the behavior of individual actors
to infer the high-level emergent behavior of the system as a whole, enabling to
integrate aspects related to micro- (individual), meso- (groups and orgainzations)
and macro- (society) levels. This is the approach taken into consideration in this
dissertation.

8.2 Summary

The thesis can be separated in two main parts. After the introduction, Chapters 2
to 4 mainly revolve around modelling social agents as BDI agent scripts, putting
an emphasis on model usability through enhancing scalability, transparency and
testability. The second part, in Chapters 5 to 7, is about modelling social norms,
specifically addressing the interaction of social agents with norms, and thus
covering the policy-making aspect of the dissertation.

In Chapter 2, an agent-based programming framework called AgentScript
Cross-Compiler (ASC2) is introduced. This framework is based on the Belief-
Desire-Intention model of agency, which is presented in the literature to model a
wide range of socio-technical systems. ASC2 uses a language based on AgentS-
peak(L)/Jason [139, 26]. While there are multiple well-developed BDI-based
frameworks described in literature, the main requirements and advantages of
ASC2’s design are scalability and usability. AS2 is a cross-compiler that takes as
input agent programs developed in a high-level language, and translates them to
executable JVM-based programs. This makes ASC2 models virtually as scalable
as any JVM program. Furthermore, the frameworks utilizes the Actor model
(implemented in Akka), giving it a consistent and robust backbone for concur-
rency. ASC2’s language, albeit heavily influenced by previous works, has unique
characteristics; most importantly, JVM languages (Java/Scala/Kotlin) statements
are allowed as part of the language, making it a polyglot of a reactive agent lan-
guage, a prolog-like logic language, and a JVM-like language. From a performance
perspective, Chapter 2 presents multiple benchmarks to compare ASC2 with

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 143PDF page: 143PDF page: 143PDF page: 143

8.2. Summary 131

other frameworks, which shows ASC2 performs better or equal to other existing
frameworks.

Chapter 3 explores the idea of adding explicit preferences at the language-
level to BDI agent. Utilizing them to allow the agent to refine abstract goals at
run-time based on the situation to achieve its desires. Where BDI scripts are
typically defined around the how-to knowledge (or procedural knowledge) of an
agent, Chapter 3 illustrates that adding preferences enhances them with what-to
knowledge. Given a partially abstract goal, the agent can gradually concretize and
achieve these goals based on its preferences. and the context of the environment
in which the agent resides. By allowing explicit preferences to an agent script,
many decisions that would be opaque (as they happen within the reasoning engine
of the agent) become instead explicit and transparent.

To model the preferences, ASC2 utilizes CP-nets, short for “Conditional
Preference Networks”, a type of graphical model used to represent and reason
about qualitative preferences. They are commonly used in the field of artificial
intelligence, specifically in preference modeling and decision-making. Chapter 3
also illustrates a novel form to represent CP-Nets alongside an algorithm to find
optimal decisions in Prolog; it proves the correctness of the algorithm and shows
that the time complexity of the algorithm is on-par with what is presented in [29].
Furthermore, this new form can also be used to express contextually conditioned
and parameterized preferences, resulting in more flexibility than pure CP-Theories.
To reiterate an example, one can define a preference statement such as “I prefer
the place I am already at (to any other place)” that depends completely on the
state of the agent in the environment. This extension makes CP-Nets, a model
that is classically used for static one-time decisions in a fully known environment,
suitable also for agents acting in dynamic environments with limited information.

Chapter 4 studies testing and verification of agent-based models at scale and
in real world settings. As the software engineering community already has many
advanced and mature tools for testing, Chapter 4 aims at creating interoperability
between agent-based modelling frameworks with mainstream software development
tools used for automated testing and integration. It illustrates the interfacing
of ASC2 with multiple tools such as build tools, unit and integration testing,
continuous integration and deployment, and code coverage systems. It furthermore
explores how we could present requirements that would allow other frameworks to
adopt the same idea.

Chapter 5 introduces a flexible agent architecture for introducing norms in
multi-agent systems. The basis of this architecture are normative advisors. In short,
a normative advisor is a normal BDI agent, except for the fact that its inference
engine –which is typically a logic-based reasoning engine (in our experiments,
eFLINT)– can reason with and about norms. With this approach, these advisor
agents can be utilized by other agents as an external source to maintain and
reason about an institutional perspective (state) based on a specific set of norms.
The advisors can be initialized with a particular norm specification and maintain

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 144PDF page: 144PDF page: 144PDF page: 144

132 Chapter 8. Conclusions and Future Work

an institutional perspective on the environment, which is continuously updated at
run-time and can be queried at anytime. Both regulative and constitutive norms
are taken into account. This chapter creates the basis to allow an agent-based
model being utilized in policy-making.

Chapter 6 and 7 presents two illustrative examples of how the proposed ap-
proaches and tools in this dissertation can be utilized to model a normative system.
Chapter 6 utilizes ASC2 and its normative extension to illustrate, implement and
analyze a model of a Data Market-Place as a normative multi-agent system. Norms
in this chapter are used as a coordination mechanism between participants of the
market to assist policy-makers by providing insights into the effect of policies, and
even generating policy and system design artifacts. The market participants in
this example use ad-hoc contractual agreements and their bounded view of the
events occurring in the system to create their own institutional view of the market.
By doing so, each participant creates a dynamic set of expectations about what
shall happen in the system. This means that, based on the pre-agreed norms and
events happening in real time, each actor infers their duties and claim towards
other participants and act following these conclusions.

Chapter 7 presents another illustrative example, focusing on particular chal-
lenges in modelling normative systems, namely mixing qualitative, quantitative,
and normative reasoning. The agents in the example described in this chapter act
based on external norms that they have adopted and internal preferences, both of
which depend on the quantitative state of the environment. While the scenarios
used in the example described in this chapter are quite simple, they illustrate how
a combination of different modelling approaches in one framework can allow for
more expressive models.

8.3 Research Results

As described in Chapter 1, the overarching research goal underlying this disser-
tation is defining approaches, methodologies and tools for policy-making in the
data-sharing domain. Modelling plays an important role in policy-making; scenario
simulation via model execution can give insights and possible predictions about
the trajectory (or the possible trajectories) of the system. Furthermore, models
facilitate stakeholder engagement and transparency about the system, and, in
the case of software-based systems, they can even guide or become part of the
development process. Among the different types of modelling, agent-based models
are especially suitable for policy-making as they define the behavior of individuals
to study emergent behaviors of the system as a whole [67]. The main research
question can then be reformulated as:

How can we model a norm-governed cyber-infrastructural system for
the purpose of policy-making?

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 145PDF page: 145PDF page: 145PDF page: 145

8.3. Research Results 133

To address this question, this dissertation explored which components of these
models need to be specified and what are the requirements of these models to
make them suitable for policy-making, specifically in data-sharing. The thesis
presented a set of tools in the form of an agent programming framework called
ASC2. To identify and build up the components of this framework, this problem
was broken down into a set of research questions that the work presented in this
dissertation aimed to answer:

Research Question 1: How can we create expressive, scalable and
modular models of social agents?

Although there are many requirements that agent models may need to satisfy,
expressivity, scalability, and, modularity are identified to have higher priority in
the context of this research.

Expressive Power The main motivation of using agent-based models in policy-
making is to build-up the system level behavior from agent behavior to analyse
the effect and impact of policies. This requires modelling the individual decision-
making process given subjective social norms, individual preferences, goals and
desires. Creating such models demands highly expressive agent models in terms
of cognitive capabilities. In Chapter 2 the ASC2 agent-programming framework
is introduced. ASC2 is based on the BDI model of agency [140] utilizing an agent
programming language called AgentScript which is based on AgentSpeak(L) [139].
The BDI agent theory used in this dissertation builds upon Bratman’s theory
of practical reasoning [31], describing the agent’s cognitive state and reasoning
process in terms of its beliefs, desires and intentions, attributes usually used to
describe human behaviors, making them highly expressive in modelling social
agents [78]. Apart from intrinsic attributes of BDI, ASC2 takes extra steps in
adding preferences at the language level, abstract goal refinement at the decision-
making level in Chapter 3, and adding norm reasoning at the framework level in
Chapter 5.

Scalability Often policy-making requires modelling a system with a high number
of individuals. This creates a challenge for agent-based modelling, particularly
if these models each have a complex cognitive model with higher computational
resource demand. Scalability then becomes a first-class requirement, as having
complex agents is not beneficial in policy-making if we can only have a few of
them in any given scenario. Scalability refers to the ability of the framework
to scale up by adding more computational resources, typically in a distributed
manner. At the execution level, ASC2 utilizes actor-oriented programming via
the Akka actor framework. Each agent consists of multiple actors, each with their
own role that can communicate through internal messaging, effectively making the
agent a modular actor micro-system in itself. This means that not only between

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 146PDF page: 146PDF page: 146PDF page: 146

134 Chapter 8. Conclusions and Future Work

agents, but even within each agent, there may be internal asynchronous execution
of concurrent tasks, creating a potential for distributed deployment, and thus
making ASC2 highly scalable.

Modularity The importance of the agent’s cognitive capabilities like preferences,
norm reasoning, goals and desires was already discussed, however, each of these
aspects is studied in distinct research communities resulting in different, valid and
interesting theories. From the experience of this dissertation, especially from a
research standpoint, it is desirable for a framework to be able to easily embed these
theories within the agents to allow for in-depth, comparative experimentation.
ASC2 agent are actor micro-systems, consisting of multiple components that can
communicate through internal messaging. This makes it quite easy to modify the
framework by simply replacing a component. This is illustrated for example in
Chapter 5 where normative advisor agents are created by replacing their logic
reasoning engine with a norm reasoning framework.

Research Question 2: How can social agents utilize software and
infrastructural models or entities?

Software and infrastructural entities are one of the three main categories of the
models needed for modelling a norm-governed socio-technical system alongside
governing norms and participating actors. In the context of this dissertation, the
focus is on allowing for an easy integration of the agent models with arbitrary
external software. As it was discussed in Chapter 1, this is not a requirement
classically recognized by the BDI literature, hence it is not satisfied by most existing
BDI-frameworks. However, recent literature shows the interest in integrating agents
into other software eco-systems, such as micro-services [46], web services and service
oriented architecture [138], and traffic simulators [10], and even machine-learning
software [115], and many of these works describe this integration as challenging.
The experience from this dissertation reinforced this, the challenge of integrating
software components with agents limits and demotes experimentation.

ASC2 was designed with interoperability as a first class requirement. The
cross-compilation step makes sure that the agent models are compatible with any
external software that is compatible with JVM-based programming languages,
with minimal effort, which intuitively covers a vast majority of production-level
software ecosystems. This turned out to be extremely useful, essentially being
able to hook an agent or a whole MAS into any software setting means easy
experimentation set-ups, which allows for the models themselves to be the main
focus instead of trying to communicate with external software, as for example
network or traffic simulators 1. This is thoroughly covered in Chapters 2 and 4.

1Although never mentioned in the text, ASC2 agents already come with REST and gRPC
interfaces out-of-the-box. For example, after running a MAS instance, there are HTTP/REST

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 147PDF page: 147PDF page: 147PDF page: 147

8.3. Research Results 135

Research Question 3: How can social agents reason with and about
norms?

The concept of norms for the purposes of this dissertation covers a wide range
of ideas in creating a normative multi-agent system. Norms can be personal
policies of individual agents, contractual agreements that groups of agents can
utilize to coordinate their collective goals, high-level societal laws that the actors
can take into account in their decision-making, rules ascribed to (software) agents
to make sure they behave within certain boundaries, or even a set of external
rules, which do not affect the behavior of actors, but are used to monitor the
behavior of the system as a whole. A normative multi-agent system then can
include more than one of the aforementioned types of norms implemented in it.
Furthermore, while the eFLINT norm reasoner has been predominantly utilized,
this dissertation does not assume any specific type of norm reasoning, this allows
for more flexibility and experimentation.

To cover all of these areas, Chapter 5 considers the capability for the agents
to have an institutional perspective over their environment by introducing the
concept of a norm instance: the institutional state of the environment, built upon
a normative source and continuously updated via observations. Furthermore,
Chapter 5 proposes a set of requirements for social agents based on [22] to allow
them to reason with and about norms, agents should be:

• able to adopt or drop any number of norm sources as norm instances;

• able to qualify observations about their environment as normatively relevant
updates, and conversely to respond to normative events by acting accordingly
in their environment;

• able to query, update, revert and reset a normative state of any norm
instance;

• able to receive and process or ignore normative events (e.g. new claims and
liberties)

• able to follow or violate normative conclusions (e.g. obligations) or query
responses (e.g. permissions and prohibitions)

• able to modify any of the above abilities at run-time.

end-points like http://host/agent/achieve that can be queried to communicate with each
agent, and vice-versa, the agents can use Java’s java.net.HttpUrlConnection package to
communicate with other HTTP/REST end-points. As the agent’s internal entities (goals, beliefs,
preferences) are also Java objects, they can simply be (de-)serialized to/from JSON. These were
used in multiple internal experiments, including network and traffic simulators.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 148PDF page: 148PDF page: 148PDF page: 148

136 Chapter 8. Conclusions and Future Work

Based on these requirements, the concept of normative advisors is introduced.
Normative advisors are entities that enable the social agents to communicate
with one or more external norm reasoners. Then, the tasks of maintaining
an institutional perspective (state) and reasoning about specific sets of norms
is delegated to the advisors while the social agent can maintain its autonomy
regardless of what norm sources it has adopted. ASC2’s modularity vastly helps in
facilitating the implementation of this approach, but it is by no means exclusive to
it, and because of the simplicity of the method almost any other BDI framework
can be utilized in the same manner. Guidelines on how this can be done in other
frameworks and what are the requirements, both for the BDI framework and the
norm reasoner, are also discussed.

Research Question 4: How can we model desires and preferences of
agents?

To be soundly applied in support for policy-making agent models should
manifest to some extent human-like behavior. For traceability and explainability
reasons, decision-making concerning actions need to be analysed alongside the
actions themselves (e.g. For which purpose the agent is asking access to the
resource? On which basis the infrastructure is granting access?). Furthermore,
modelling agents to manifest traceable and explainable decision-making whilst
requiring them to reason with norms is a challenging task. It is very easy to
see that an agent’s decisions can be in conflict with a set of societal norms, two
sets of norms adopted by the agent can be in conflict with each-other, or even
the agent’s desires or goals alone can result in non-trivial conflicts. To address
these issues, this dissertation proposes giving the agent designer the ability to
encode conditional and context-based higher level decision-making rules in agent
programs in the form of explicit preferences.

Preferences play a crucial role in decision-making [135]. Several models of
preferences have been presented in the literature (e.g. on decision-making, planning,
etc.), with various levels of granularity and expressiveness [102, 30]. On a higher
level, preference representation methods can be divided into quantitative and
qualitative [102]. The most straightforward quantitative approaches are based
upon utility theory and related forms of decision theory. In [48] one can find some
examples of integration of these types of preferences in a BDI architecture.

Although quantitative approaches have clear computational advantages, they
also suffer from the non-trivial issue of elicitation: translating users’ preferences
into utility functions. This explains the existence of a family of qualitative or
hybrid solutions, as LPP [16] and PDDL3 [83]. Some preference models, as CP-
nets (qualitative) [29] and GAI networks (quantitative) [88], have been specifically
introduced for taking into account dependencies and conditions between preferences
via compact representations [135], highly relevant in domains with a large number
of features.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 149PDF page: 149PDF page: 149PDF page: 149

8.3. Research Results 137

The strong support in the decision-making literature for compact representa-
tions of verbalized preferences—as for instance those captured e.g. by CP-nets
[29]—motivates their use in computational agents, especially in applications in
which agents are deemed to reproduce human behaviour, aiming to capture inten-
tional characterizations of (computational) behaviour of computational agents in
data-sharing infrastructures in support of policy-making and regulation activities.

Chapter 3 introduces an approach for integrating CP-Net preferences into BDI
agents at the language level, specifically utilized in abstract goal refinement. This
allows the agents to take an abstract goal and concretize it in an incremental
manner through a decision-making process based on conditional and context-based
preferences explicitly defined by the designer. These conditions and contexts can
include observations over the environment, agent’s beliefs, adopted norms –the
institutional view over the environment–, and external events.

Introducing explicit preferences in BDI scripts brings three advantages: (1)
It increases the representational depth, capturing what is the rationale behind
the priority in plan selection; (2) It makes agent models more readable and
explainable, as choices are in principle transparently derived from the preferential
structure; (3) It makes the programs more reusable: it is plausible that agents
(e.g. representatives of organizations) in a certain domain might share the same
procedural knowledge even when having different preferences, as much as that
agents might change their policy without changing their procedural knowledge.

Research Question 5: How to make agent-based modelling a usable
approach for policy-makers and designers?

Another issue that is addressed in this dissertation is the practicality of utilizing
agent-based models as part of real-world system design as part of policy-making
processes. It is always the case that accessibility and usability of the tools in a
certain methodology is an important part of their adoption, it is hard and often
even infeasible to convince domain experts like programmers to utilize an approach
if they need to also adopt a whole new set of tools and ecosystems. This is the
case for utilizing agent-based models and has been a major concern in this work,
which has focused in particular on the model designer role in the policy-making
process.

The advances in software development tools in recent years is intuitively both
a symptom and a cause of the advancement of the computer software industry.
This includes integrated development environments, build tools, automated testing
frameworks, DevOps systems, automated deployment tools, code analysis, and
many others support instruments. This dissertation argued that having these tools
also available for agent-based programming brings a huge advantage to the field.
Chapter 4 focuses on this idea, and discusses what are the design requirements of
an agent-based programming framework that would make viable interfacing with
these tools, and what would be the advantages for agent-based modelling. These

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 150PDF page: 150PDF page: 150PDF page: 150

138 Chapter 8. Conclusions and Future Work

advantages include for example straightforward automated agent unit testing,
automated multi-agent scenario execution, recording historical model executions
traces, and a modular and collaborative system modelling that scales up the
development process. The proof of concept show-cased in ASC2 is also illustrated
in Chapter 4 with a focus on agent and multi-agent system testing.

8.4 Discussion, Limitations and Trade-offs

In this section, the main limitations and challenges of the work presented in this
dissertation will be discussed. Furthermore, important trade-offs that occurred by
the choices taken are analyzed to provide the reader with better insights about
the side-effects of these choices.

Theoretical depth vs. Scalability Throughout this thesis, scalability, both in
model development and execution, is a central theme. Ideally, this should not take
anything away from the underlying theoretical soundness of the work; however, in
practice there is always a trade-off. A good example of this can be a comparison
between ASC2 and other frameworks like 2APL [54] and Jason [26] which both
are sources of inspiration for ASC2.

2APL agents on the language-level have declarative knowledge about the
(expected) effects of their action, known as belief-update actions. In effect, this is
a type of introspection ability, which, although interesting for theoretical purposes,
has a massive impact on performance: the agent is not only executing actions,
but also monitoring its internal knowledge about the known effects of its actions
while performing them. In fact, 2APL was taken out from the benchmarks of
Chapter 2 as it could not complete them in reasonable time and would be an
outlier in the results. The choice for ASC2’s design to go the opposite way was not
taken lightly, though. We explored the advantages of having such constructs [123]
(paper not included in the thesis), where belief-update actions (expected effects
of primitive actions) are added to ASC2 and utilized for preference reasoning in
the plan selection step of the agent. While this reasoning happens at compile
time and does not affect the reactive nature of the agent, in practice assuming
knowledge about effects of actions is unrealistic in a dynamic environment.

Another example is the introspection of agents into its own procedural knowl-
edge – its own plan library – which can allow the agent to plan ahead before
selecting a plan, by analysing the possible outcomes of that plan. There are
multiple approaches introduced in the literature to allow agents to reason about
through planning based on their procedural knowledege (see [151, 161]. We
explored a similar idea in another work [122] (not included in this thesis), to use
run-time introspection and preference reasoning for plan selection of the agent.
The problem with this approach is that it assumes that the agent can reason
about multiple steps into its goal refinement. Intuitively, this is not feasible in

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 151PDF page: 151PDF page: 151PDF page: 151

8.4. Discussion, Limitations and Trade-offs 139

highly dynamic environments [57] and becomes a computational burden. These
reasons, together with space constraints, explain why these two papers [122, 123]
are not presented in this dissertation.

As a final example of a trade-off, we can look at the three selection functions
of AgentSpeak(L)/Jason and their counterpart in ASC2: goal-selection, plan
selection, and intention selection. There are important theoretical reasons for
the presence of these selection functions (see [140, 139]), for example the goal
selection function can be utilized by the agent to select the most important or most
preferred goal for refinement at run-time. However, in ASC2, in practice, only plan
selection exists. The reason for this is the full asynchronous nature of the agents.
Unlike Jason and many other frameworks, ASC2 does not include a real execution
cycle starting from goal selection and ending in intention selection. Instead, the
agents are fully concurrent and reactive entities, a reasoning process starts either
when there is an event and the agent has computational resources available (CPU),
or alternatively when computational resources become available and the agent has
some events it did not react to yet, and the only way for the agent to perform
goal selection for example is to use a priority queue to sort the incoming events
with any arbitrary order. Nevertheless, the effect of having concurrent agents is
illustrated in Section 2.4.3 where ASC2 has a massive performance advantage –or
better put, absence of thread blocking between intentions– over Jason.

Testability vs. Verifiability In system and software verification, in comparison
to formal methods such as static analysis, theorem proving, and model checking,
software testing is considered to be a less exhaustive approach to verify the correct
behavior of a system. Multi-agent systems are also not an exception, there are
multiple approaches introduced in the literature on verification of agent systems
(for a comprehensive overview see [79]). Indeed, this can be considered a limitation
of this dissertation, although the soundness of some parts of the introduced
policy-making framework are proven (e.g., correctness of basic CP-Net preference
reasoning in Chapter 3), testing is still the main approach to verification, as
some other parts of the framework that although illustrated to be correct through
examples, are not fully verified in a formal way (e.g., context-based CP-Net
preferences in Chapter 3).

Although testing in itself has many advantages over formal methods (testing
are generally performed on the real system and not on a model), this limitation
must be acknowledged. However, we should also look at the context of the agent
systems in this dissertation, and why testing was favored over formal methods. In
our policy-making framework, agents and the multi-agent systems are utilized as
models of a real system under scrutiny, its participating actors and implemented
policies for the sake of verifying the said system and policies. In a sense, the agents
are already a model of a real system, so creating further second-level models of the
agents for the sake of model checking for example and proving their correctness,

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 152PDF page: 152PDF page: 152PDF page: 152

140 Chapter 8. Conclusions and Future Work

although theoretically interesting and valuable in other contexts, could be an
impractical exercise. Nevertheless, we still believe that the framework as a whole
can benefit from formal methods and on-going research is being performed for
example to allow model checking a norm source.

Nondeterministic behavior Chapter 1 argued that agent-based modelling is a
suitable approach for policy-making because it can create a system with emergent
behavior from lower-level actor specifications. This is true with ASC2 agents –or
any BDI-like agent– because they react and behave based on their perception of
their environment. However, ASC2 agents are fully deterministic in their beliefs
and decision-making; this is desirable for cases where individual agent behavior
is analyzed and reproducibility is a requirement. However, for larger models
where the individual agent behavior is not as important as the statistical emergent
behaviors of the system, allowing for probabilistic beliefs and decision-making is
an important asset. The reason for this is that instead of modelling many different
types of deterministic agents, the designer can create agents with probabilistic
decision-making and then generate a synthetic population of agents with different
attributes which results in different behaviors.

Note that ASC2 already implicitly allows for such agents. One approach to
achieve this is utilizing the context-conditions of plans, where a plan’s applicability
is affected by some arbitrary nondeterministic argument. Take for example the
following plan:

+!g : c & #Random.nextDouble() > 0.5 => ...

This plan is essentially applicable if its context condition holds and an arbitrary
random number selection between zero and one is above 0.5, meaning it is not
selected 50% of the times, even if it is applicable. ASC2 even allows for generation
of a population of agents through the same approach, take for example the
following agent:

change_of_decision(#Random.nextDouble()).

+!g : c & change_of_decision(P) & P > 0.5 => ...

With this script, at initialization time, each individual agent calls the underlying
#Random.nextDouble() and puts a different variable as its belief. Then, at run-
time and when deliberating about the applicability of the plan, checks if this
variable is above a certain threshold. Note that this variable can even be subject
to changes at run-time. Finally, the most interesting and unique way for ASC2
agents to model probabilistic behavior is through preferences. Recall the following
preference statement from Chapter 3:

!go_order(L,_) >> !go_order(_,_) :- at(L) .

This statement essentially is equal to “I prefer the place I am already at (over all
others)”, we can change this statement to:

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 153PDF page: 153PDF page: 153PDF page: 153

8.5. Future Works 141

!go_order(L,_) >> !go_order(_,_) :- at(L) & #Random.nextDouble() < 0.8.

Which makes it equal to the statement that “I prefer the place I am already at
with 80% probability”, making it a nondeterministic preference.

Although ASC2 in its current form gives provides these capabilities for encoding
probabilistic behavior, it needs a wider array of study and modifications to allow for
more expressive models that include nondeterministic properties, both concerning
the agent and the environment.

8.5 Future Works

This section shortly explores some of the ideas that were considered during this
research but never fully executed as possible future works.

8.5.1 Macro System Modelling

As mentioned as a limitation, approaches in this dissertation include only agents
with deterministic beliefs, rules, and plans exclusively modeled by a human
designer. This is an advantage for the cases where the goal is to model a society
bottom-up and analyse the behaviors of a handful of agents. The main drawback
of this method is that it limits the size of the models in terms of diversity of
agent types; although the framework allows for a large population of agents
from the computational perspective, with the current capabilities of ASC2, the
designer may not be able to model this population in a sufficiently realistic manner.
Then, approaches for top-down modelling of the system by generating a synthetic
population are desirable, specially if such approach still ends up in expressive
agent scripts that can be analyzed.

Generating synthetic populations is a mature field of study2 and there are
multiple algorithms and methods proposed for generation of agent populations [39,
101], some even with capabilities for generating executable agent-based models [84].
These approaches are typically categorized based on their input data, namely
into sample-based and sample-free methods, or based on their synthesis technique
into synthetic reconstruction (SR) and combinatorial optimization (CO) methods
(see [38]). Another thread of work that is specifically interesting for integration with
ASC2 are methods for generating statistical cultures (or random elections) [155]
that are effectively algorithms for generating a synthetic population represented
by their preferences in a certain domain, with a focus on realism and diversity of
the population. Intuitively, this fulfills one of the main motivations of integrating
preferences into agents which is to have agents with shared procedural knowledge
behave differently based on their preference. This allows the designer to model

2See for example the Journal of Artificial Societies and Social Simulation: https://www.

jasss.org/JASSS.html

https://jasss.org/JASSS.html

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 154PDF page: 154PDF page: 154PDF page: 154

142 Chapter 8. Conclusions and Future Work

detailed agent scripts and preferences and then generate a large population of
agents based on statistical cultures. Figure 8.1 is a simple illustration of using
this approach.

Figure 8.1: Overview of modelling process with synthetic populations

8.5.2 Alternative Agent Reasoning Approaches

The next intuitive future work for this dissertation is the exploration of extending
the agents’ reasoning capabilities. This is especially interesting because of the
modularity of ASC2’s agent architecture: many extensions to BDI reasoning
proposed in the literature that may be infeasible to implement in other framework
should in principle be easier to utilize in ASC2.

Value-based reasoning Value-based reasoning in BDI agents have had increas-
ing attention from the respective research community in recent years, particularly
in situations that the agents are required to make moral or ethical decisions.
Values are an important part of human reasoning [177] and value-based reasoning
refers to the idea that agents should make their decisions based on a consistent
and stable underlying value system that they desire to satisfy. There are works
in the literature on embedding value-based reasoning BDI agents that perform a
diverse set of tasks and utilize values as an over-arching mechanism of balance
between these tasks (e.g., see [48]). Values are also important in agents with
norm reasoning, as it was also argued in Chapter 5 norms are rarely absolute and
different set of norms often are in conflict, meaning conflict resolution methods
are required. Values can be a basis for conflict resolution and are used as such in
the literature [12], between the norms of “user’s privacy must be preserved” and
“user’s health must be preserved” which one should take precedence when there
is a conflict? This intuitively ties in strongly to this dissertation as the idea of
normative conflict resolution is an important part of it and furthermore answering
questions like what is the connection between preferences and values.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 155PDF page: 155PDF page: 155PDF page: 155

8.5. Future Works 143

Planning Planning from first principles in BDI agents is an idea that has been
explored with various levels of success in the literature [151, 58, 142]. Among
different planning methods, HTN-like approaches [75] are particularly interesting
for BDI agents, as they are both based on decomposition of tasks into smaller tasks.
While interesting to consider, (deliberate) planning in BDI agents is not always
an enhancement for multiple reasons. Firstly, planning requires introspection:
the agent needs to look into its own internal procedural knowledge to be able to
create plans, this means a considerable performance impact and less scalability.
Secondly, concretized plans tend to fail unexpected changes in the environment,
meaning planning is less feasible in highly dynamic environments [57].

However, as illustrated in [122, 123] on-demand planning prior to action at
run-time is not the only method for an agent to utilize planning. As integration of
norms in agent’s reasoning has an impact on its decision-making, a future work can
be to utilize planning to optimize agent’s procedural knowledge with a bounded
usage of computational power at compile- or run-time by taking norms as (soft)
constraints in planning algorithm’s domain information. Another interesting future
work is to utilize planning for multi-agent coordination; planning algorithms are
typically not constrained to creating plans for only one agent, and this capability
is lost when they are used from the perspective of only one agent. This can allow
agents to create high-level shared plans to allow them to coordinate in achieving
their tasks.

(Sub-symbolic) machine learning Interactions between machine learning
capabilities and BDI agents are another idea that have been explored in the
literature [153, 90]. These studies generally revolve around using simple machine
learning algorithms (e.g., Q-Learning) to enhance the decision-making of the
agent. The issue here is that with recent advancement in AI algorithms, from
the performance and behavioral complexity perspective, symbolic approaches
such as BDI agents that require a designer to model the agents are not on-par
with sub-symbolic methods that can infer behavior based on patterns in large
amounts of data. This means if the goal is to have more realistic behavior, the
BDI component is just a burden for the agent.

However, sub-symbolic approaches also have shortcomings, they struggle with
explainability and interpretability [111] and there is a pressing research interest
to amend this in communities like Explainable Artificial Intelligence (XAI) [52].
Furthermore, sub-symbolic algorithms are very challenging to regulate and verify
from high level perspective like normativity or fairness [110]. We believe there are
opportunities to exploit in utilizing symbolic approaches and frameworks like what
is presented in this work to address these issues in the future. As an example, in
the architecture of normative advisors, one of the motivations of separating the
normative reasoning from agent reasoning is to isolate the two so that, in theory,
any agent, including sub-symbolic ones, can also utilize advisors via the same

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 156PDF page: 156PDF page: 156PDF page: 156

144 Chapter 8. Conclusions and Future Work

interface to create normative sub-symbolic agents. This way, not only the agent
can query about normativity of its actions prior to performance, the advisor can
also prompt the agent based on its internal institutional state to perform certain
actions. This results in a separation of the agent’s reasoning that it has learned
via processing large amounts of data and effective norms that are encoded by
experts.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 157PDF page: 157PDF page: 157PDF page: 157

Bibliography

[1] Software testing services market by product, end-users, and geography -
global forecast and analysis 2019-2023.
https://www.industryresearch.co/software-testing-services-market-
14620379, Aug 2019. Online; accessed 1 January 2020.

[2] Additional Protocol I. Protocol Additional to the Geneva Conventions of
12 August 1949, and relating to the Protection of Victims of International
Armed Conflicts (adopted 8 June 1977, entered into force 7 December 1978)
1125 UNTS 3, 1977.

[3] Tobias Ahlbrecht, Jürgen Dix, and Niklas Fiekas. Scalable multi-agent
simulation based on mapreduce. In Multi-Agent Systems and Agreement
Technologies, pages 364–371. Springer International Publishing, 06 2017.

[4] Rania Rizki Arinta and Emanuel Andi W.R. Natural disaster application
on big data and machine learning: A review. In 2019 4th International
Conference on Information Technology, Information Systems and Electrical
Engineering (ICITISEE), pages 249–254, 2019.

[5] Malte Aschermann, Sophie Dennisen, Philipp Kraus, and Jörg P. Müller.
LightJason, a Highly Scalable and Concurrent Agent Framework: Overview
and Application. In Proceedings of the 17th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS2018), pages 1794–
1796, 2018.

[6] Malte Aschermann, Philipp Kraus, and Jörg P. Müller. Lightjason - a bdi
framework inspired by jason. In EUMAS/AT, 2016.

[7] Jorge A Baier and Sheila A McIlraith. On domain-independent heuristics for
planning with qualitative preferences. In AAAI Spring Symposium: Logical
Formalizations of Commonsense Reasoning, pages 7–12, 2007.

145

https://www.industryresearch.co/software-testing-services-market-14620379
https://www.industryresearch.co/software-testing-services-market-14620379

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 158PDF page: 158PDF page: 158PDF page: 158

146 Bibliography

[8] Najwa Abu Bakar and Ali Selamat. Agent systems verification : systematic
literature review and mapping. Applied Intelligence, 48(5):1251–1274, 2018.

[9] Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio,
and Stefano Tedeschi. Computational accountability in mas organizations
with adopt. Applied Sciences (Switzerland), 8, 3 2018.

[10] Jetze Baumfalk, Mehdi Dastani, Barend Poot, and Bas Testerink. A sumo
extension for norm-based traffic control systems. In Simulating Urban
Traffic Scenarios: 3rd SUMO Conference 2015 Berlin, Germany, pages
55–82. Springer, 2019.

[11] Tristan M. Behrens and Jürgen Dix. Model checking multi-agent systems
with logic based Petri nets. Annals of Mathematics and Artificial Intelligence,
51(2-4):81–121, 2007.

[12] Trevor Bench-Capon and Sanjay Modgil. Norms and value based reasoning:
justifying compliance and violation. Artificial Intelligence and Law, 25:29–64,
2017.

[13] Trevor Bench-Capon, Henry Prakken, Adam Wyner, and Katie Atkinson.
Argument schemes for reasoning with legal cases using values. In Proceedings
of the Fourteenth International Conference on Artificial Intelligence and
Law, ICAIL ’13, pages 13–22, New York, NY, USA, 2013. ACM.

[14] Trevor J. M. Bench-Capon. Persuasion in Practical Argument Using Value-
based Argumentation Frameworks. Journal of Logic and Computation,
13(3):429–448, 06 2003.

[15] Trevor J. M. Bench-Capon and Katie Atkinson. Dimensions and values
for legal CBR. In Adam Z. Wyner and Giovanni Casini, editors, Legal
Knowledge and Information Systems - JURIX 2017: The Thirtieth Annual
Conference, Luxembourg, 13-15 December 2017, volume 302 of Frontiers in
Artificial Intelligence and Applications, pages 27–32. IOS Press, 2017.

[16] Meghyn Bienvenu, Christian Fritz, and Sheila A McIlraith. Planning with
qualitative temporal preferences. KR, 6:134–144, 2006.

[17] Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia
Drossopoulou, and Tobias Wrigstad. Run, actor, run: Towards cross-
actor language benchmarking. In Proceedings of the 9th ACM SIGPLAN
International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE 2019, page 41–50, New York, NY, USA, 2019.
Association for Computing Machinery.

https://preferences.kr/

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 159PDF page: 159PDF page: 159PDF page: 159

Bibliography 147

[18] Guido Boella, Llio Humphreys, Robert Muthuri, Piercarlo Rossi, and Leen-
dert van der Torre. A critical analysis of legal requirements engineering from
the perspective of legal practice. 2014 IEEE 7th International Workshop
on Requirements Engineering and Law, RELAW 2014 - Proceedings, pages
14–21, 2014.

[19] Guido Boella, Llio Humphreys, Robert Muthuri, Piercarlo Rossi, and Leen-
dert van der Torre. A critical analysis of legal requirements engineering from
the perspective of legal practice. 2014 IEEE 7th International Workshop
on Requirements Engineering and Law, RELAW 2014 - Proceedings, pages
14–21, 2014.

[20] Guido Boella, Gabriella Pigozzi, and Leendert van der Torre. Normative
systems in computer science-ten guidelines for normative multiagent systems.
Normative Multi-Agent Systems, pages 1–21, 2009.

[21] Guido Boella and Leendert van der Torre. Regulative and constitutive
norms in normative multiagent systems. In Proceedings of the Ninth Interna-
tional Conference on Principles of Knowledge Representation and Reasoning,
KR’04, page 255–265. AAAI Press, 2004.

[22] Guido Boella, Leendert van der Torre, and Harko Verhagen. Introduc-
tion to normative multiagent systems. Computational and Mathematical
Organization Theory, 12(2-3 SPEC. ISS.):71–79, 2006.

[23] William H. Boothby. New Technologies and the Law of War and Peace.
Cambridge University Press, Cambridge, 2019.

[24] Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge.
Verifiable multi-agent programs. Lecture Notes in Artificial Intelligence
(Subseries of Lecture Notes in Computer Science), 3067:72–89, 2004.

[25] Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge.
Verifying multi-agent programs by model checking. Autonomous Agents and
Multi-Agent Systems, 12(2):239–256, 2006.

[26] Rafael H Bordini, Jomi F Hübner, and Renata Vieira. Jason and the golden
fleece of agent-oriented programming. Multi-agent programming: languages,
platforms and applications, pages 3–37, 2005.

[27] Juan A. Bot́ıa, Jorge J. Gómez-Sanz, and Juan Pavón. Intelligent data
analysis for the verification of multi-agent systems interactions. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 4224 LNCS:1207–1214,
2006.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 160PDF page: 160PDF page: 160PDF page: 160

148 Bibliography

[28] Paul-Marie Boulanger and Thierry Bréchet. Models for policy-making in
sustainable development: The state of the art and perspectives for research.
Ecological Economics, 55:337–350, 11 2005.

[29] Craig Boutilier. CP-nets: A Tool for Representing and Reasoning with
Conditional. Ai Applications, 21:135–191, 2004.

[30] Ronen Brafman and Carmel Domshlak. Preference Handling - An Introduc-
tory Tutorial. AI Magazine, 30(1):58, 2009.

[31] Michael Bratman. Intention, plans, and practical reason. 1987.

[32] G Brewka. A Rank Based Description Language for Qualitative Prefer-
ences. Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI’04), (May):303–307, 2004.

[33] Jan Broersen, Mehdi Dastani, Joris Hulstijn, Zisheng Huang, and Leendert
van der Torre. The BOID Architecture - Conflicts Between Beliefs, Obliga-
tions, Intentions and Desires. In In Proceedings of the Fifth International
Conference on Autonomous Agents, pages 9–16. ACM Press, 2001.

[34] Jan Broersen, Mehdi Dastani, and Leendert van der Torre. Resolving
conflicts between beliefs, obligations, intentions, and desires. Lecture Notes
in Artificial Intelligence (Subseries of Lecture Notes in Computer Science),
2143:568–579, 2001.

[35] Rafael C Cardoso, Angelo Ferrando, Louise A Dennis, and Michael Fisher.
Implementing Ethical Governors in BDI. In Natasha Alechina, Matteo
Baldoni, and Brian Logan, editors, Engineering Multi-Agent Systems, pages
22–41, Cham, 2022. Springer International Publishing.

[36] Rafael C. Cardoso, Maicon R. Zatelli, Jomi F. Hübner, and Rafael H. Bordini.
Towards benchmarking actor- and agent-based programming languages. In
Proceedings of the 2013 Workshop on Programming Based on Actors, Agents,
and Decentralized Control, AGERE! 2013, page 115–126, New York, NY,
USA, 2013. Association for Computing Machinery.

[37] Vinay Chamola, Vikas Hassija, Sakshi Gupta, Adit Goyal, Mohsen Guizani,
and Biplab Sikdar. Disaster and pandemic management using machine
learning: A survey. IEEE Internet of Things Journal, 8(21):16047–16071,
2021.

[38] Kevin Chapuis, Patrick Taillandier, and Alexis Drogoul. Generation of syn-
thetic populations in social simulations: A review of methods and practices.
Journal of Artificial Societies and Social Simulation, 25(2):6, 2022.

https://tutorial.ai/

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 161PDF page: 161PDF page: 161PDF page: 161

Bibliography 149

[39] Kevin Chapuis, Patrick Taillandier, Benoit Gaudou, Frédéric Amblard, and
Samuel Thiriot. Gen*: an integrated tool for realistic agent population
synthesis. In Conference of the European Social Simulation Association,
pages 189–200. Springer, 2019.

[40] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. Caf - the
c++ actor framework for scalable and resource-efficient applications. In
Proceedings of the 4th International Workshop on Programming Based on
Actors Agents & Decentralized Control, AGERE! ’14, page 15–28, New York,
NY, USA, 2014. Association for Computing Machinery.

[41] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, Cambridge, MA, USA, 2000.

[42] Sylvan Clebsch and Sophia Drossopoulou. Fully concurrent garbage collection
of actors on many-core machines. SIGPLAN Not., 48(10):553–570, October
2013.

[43] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil.
Deny capabilities for safe, fast actors. In Proceedings of the 5th International
Workshop on Programming Based on Actors, Agents, and Decentralized
Control, AGERE! 2015, page 1–12, New York, NY, USA, 2015. Association
for Computing Machinery.

[44] Chris Clifton, Murat Kantarcioǧlu, AnHai Doan, Gunther Schadow, Jaideep
Vaidya, Ahmed Elmagarmid, and Dan Suciu. Privacy-preserving data
integration and sharing. In Proceedings of the 9th ACM SIGMOD workshop
on Research issues in data mining and knowledge discovery, pages 19–26,
2004.

[45] Roberta Coelho, Uirá Kulesza, Arndt von Staa, and Carlos Lucena. Unit
testing in multi-agent systems using mock agents and aspects. In Inter-
national Workshop on Software Engineering for Large-Scale Multi-Agent
Systems, SELMAS ’06, page 83–90, 2006.

[46] R.W. Collier, D. Lillis, E. O’Neill, and G.M.P. O’Hare. MAMS: Multi-agent
microservices. The Web Conference 2019 - Companion of the World Wide
Web Conference, WWW 2019, 2019.

[47] Geoffrey S. Corn. War, law, and the oft overlooked value of process as a
precautionary measure. Pepperdine Law Review, 42:419–466, 2014.

[48] Stephen Cranefield, Michael Winikoff, Virginia Dignum, and Frank Dignum.
No pizza for you: Value-based plan selection in BDI agents. IJCAI Interna-
tional Joint Conference on Artificial Intelligence, pages 178–184, 2017.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 162PDF page: 162PDF page: 162PDF page: 162

150 Bibliography

[49] N. Criado, E. Argente, P. Noriega, and V. Botti. Towards a normative BDI
architecture for norm compliance. CEUR Workshop Proceedings, 627:65–81,
2010.

[50] Natalia Criado, Estefania Argente, Pablo Noriega, and Vicente Botti. Manea:
A distributed architecture for enforcing norms in open mas. Engineering
Applications of Artificial Intelligence, 26(1):76–95, 2013.

[51] Rebecca Crootof. The Killer Robots are here: Legal and Policy Implications.
Cardozo Law Review, 36:1837–1915, 2015.

[52] Arun Das and Paul Rad. Opportunities and challenges in explainable
artificial intelligence (xai): A survey. arXiv preprint arXiv:2006.11371,
2020.

[53] Aniruddha Dasgupta and Aditya K. Ghose. Implementing reactive BDI
agents with user-given constraints and objectives. International Journal of
Agent-Oriented Software Engineering, 4(2):141, 2010.

[54] Mehdi Dastani. 2APL: A practical agent programming language. Au-
tonomous Agents and Multi-Agent Systems, 16(3):214–248, 2008.

[55] Mehdi Dastani, Jürgen Dix, and Peter Novak. The first contest on multi-
agent systems based on computational logic. In Proceedings of the 6th
International Conference on Computational Logic in Multi-Agent Systems,
CLIMA’05, page 373–384, Berlin, Heidelberg, 2005. Springer-Verlag.

[56] Nuno David, Jaime Simão Sichman, and Helder Coelho. Towards an
emergence-driven software process for agent-based simulation. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2581(301041):89–104,
2003.

[57] Lavindra de Silva and Lin Padgham. A Comparison of BDI Based Real-Time
Reasoning and HTN Based Planning. In AI 2004: Advances in Artificial
Intelligence, pages 1167–1173, 2004.

[58] Lavindra de Silva, Lin Padgham, and Sebastian Sardina. HTN-like solutions
for classical planning problems: An application to BDI agent systems.
Theoretical Computer Science, 763:12–37, 2019.

[59] Defense Innovation Board. AI Principles : Recommendations on the Eth-
ical Use of Artificial Intelligence by the Department of Defense Defense
Innovation Board. Technical report, Department of Defense, 2019.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 163PDF page: 163PDF page: 163PDF page: 163

Bibliography 151

[60] Ameneh Deljoo, Tom M van Engers, Robert van Doesburg, Leon Gommans,
and Cees de Laat. A normative agent-based model for sharing data in secure
trustworthy digital market places. In Proceedings of the 10th International
Conference on Agents and Artificial Intelligence, pages 290–296, 2018.

[61] Yuri Demchenko, Paola Grosso, Cees de Laat, and Peter Membrey. Address-
ing big data issues in scientific data infrastructure. In 2013 International
Conference on Collaboration Technologies and Systems (CTS), pages 48–55,
2013.

[62] Louise A. Dennis, Michael Fisher, Nicholas K. Lincoln, Alexei Lisitsa, and
Sandor M. Veres. Practical verification of decision-making in agent-based
autonomous systems. Automated Software Engineering, 23(3):305–359, 2016.

[63] Louise A. Dennis, Michael Fisher, Matthew P. Webster, and Rafael H.
Bordini. Model checking agent programming languages. Automated Software
Engineering, 19(1):5–63, 2012.

[64] Enrico Denti, Andrea Omicini, and Alessandro Ricci. Tu prolog: A light-
weight prolog for internet applications and infrastructures. In Proceedings
of the Third International Symposium on Practical Aspects of Declarative
Languages, PADL ’01, page 184–198, Berlin, Heidelberg, 2001. Springer-
Verlag.

[65] Akshat Dhaon and Rem W. Collier. Multiple inheritance in agentspeak(l)-
style programming languages. In Proceedings of the 4th International Work-
shop on Programming Based on Actors Agents & Decentralized Control, New
York, NY, USA, 2014. Association for Computing Machinery.

[66] Tommaso Di Noia, Thomas Lukasiewicz, Maria Vanina Martinez, Gerardo I.
Simari, and Oana Tifrea-Marciuska. Combining existential rules with the
power of CP-theories. IJCAI International Joint Conference on Artificial
Intelligence, 2015-Janua(Ijcai):2918–2925, 2015.

[67] Frank Dignum, Virginia Dignum, and Catholijn Jonker. Towards agents for
policy making. pages 141–153, 05 2008.

[68] Frank Dignum, David Kinny, and Liz Sonenberg. Motivational attitudes
of agents: On desires, obligations, and norms. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2296(Section 2):83, 2002.

[69] Jürgen Dix and Yingqian Zhang. Impact: A Multi-Agent Framework with
Declarative Semantics, volume 15, pages 69–94. 01 2005.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 164PDF page: 164PDF page: 164PDF page: 164

152 Bibliography

[70] Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri Prade. Pref-
erences in AI: An overview. Artificial Intelligence, 175(7-8):1037–1052,
2011.

[71] Giovanni Dosi and Andrea Roventini. More is different . . . and complex!:
The case for agent-based macroeconomics. SSRN Electronic Journal, 01
2019.

[72] Paul Ducheine and Terry Gill. From Cyber Operations to Effects: Some
Targeting Issues. Militair Rechtelijk Tijdschrift, 111(3):37–41, 2018.

[73] Erdem Eser Ekinci, Ali Murat Tiryaki, Övünç Çetin, and Oguz Dikenelli.
Goal-Oriented Agent Testing Revisited. In Michael Luck and Jorge J Gomez-
Sanz, editors, Agent-Oriented Software Engineering IX, pages 173–186, 2009.

[74] A.F.S.A. El Gammal. Towards a comprehensive framework for business
process compliance. Other publications tisem, Tilburg University, 2012.

[75] Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Com-
plexity and expressivity. In Proceedings of the 12th AAAI Conference on
Artificial Intelligence, pages 1123–1129, 1994.

[76] Jacques Ferber and Gerhard Weiss. Multi-agent systems: an introduction to
distributed artificial intelligence, volume 1. Addison-wesley Reading, 1999.

[77] Angelo Ferrando, Louise A. Dennis, Davide Ancona, Michael Fisher, and
Viviana Mascardi. Verifying and validating autonomous systems: Towards
an integrated approach, volume 11237. Springer International Publishing,
2019.

[78] Michael Fisher, Rafael H. Bordini, Benjamin Hirsch, and Paolo Torroni.
Computational logics and agents: A road map of current technologies and
future trends. Computational Intelligence, 23(1):61–91, 2007.

[79] Michael Fisher, Viviana Mascardi, Kristin Yvonne Rozier, Bernd Holger
Schlingloff, Michael Winikoff, and Neil Yorke-Smith. Towards a framework
for certification of reliable autonomous systems, volume 2. Springer US,
2020.

[80] Dieter Fleck, editor. The Handbook of International Humanitarian Law.
Oxford University Press, Oxford, 3 edition, 2013.

[81] Peter Fratrič, Mostafa Mohajeri Parizi, Giovanni Sileno, Tom van Engers,
and Sander Klous. Do agents dream of abiding by the rules? learning
norms via behavioral exploration and sparse human supervision. Nineteenth
International Conference on Artificial Intelligence and Law (ICAIL 2023),
2023, Braga, Portugal, 1.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 165PDF page: 165PDF page: 165PDF page: 165

Bibliography 153

[82] Peter Fratrič, Giovanni Sileno, Sander Klous, and Tom van Engers. Manip-
ulation of the bitcoin market: an agent-based study. Financial Innovation,
8(1):60, 2022.

[83] Alfonso Gerevini and Derek Long. Plan Constraints and Preferences in
PDDL3 The Language of the Fifth International Planning Competition 1
Motivations and Goals. pages 1–12, 2005.

[84] Amineh Ghorbani, Pieter Bots, Virginia Dignum, and Gerard Dijkema.
MAIA: A framework for developing agent-based social simulations. Journal
of Artificial Societies and Social Simulation, 16(2), 2013.

[85] Jack P Gibbs. Norms: The problem of definition and classification. American
Journal of Sociology, 70(5):586–594, 1965.

[86] Leon Gommans. Multi-Domain Authorization for e-Infrastructures. PhD
thesis, 2014.

[87] Leon Gommans, John Vollbrecht, Betty Gommans de Bruijn, and Cees
de Laat. The service provider group framework. Future Generation Computer
Systems, 45:176–192, 2014.

[88] C. Gonzales and P. Perny. GAI Networks for Utility Elicitation. Proceed-
ings of the 9th International Conference on the Principles of Knowledge
Representation and Reasoning, pages 224–233, 2004.

[89] Matthias Grabmair. Predicting trade secret case outcomes using argument
schemes and learned quantitative value effect tradeoffs. In Proceedings of
the 16th edition of the International Conference on Articial Intelligence and
Law, page 89–98, New York, NY, USA, 2017. Association for Computing
Machinery.

[90] Alejandro Guerra-Hernández, Amal El Fallah-Seghrouchni, and Henry Sol-
dano. Learning in bdi multi-agent systems. In Computational Logic in
Multi-Agent Systems: 4th International Workshop, CLIMA IV, Fort Laud-
erdale, FL, USA, January 6-7, 2004, Revised Selected and Invited Papers 4,
pages 218–233. Springer, 2005.

[91] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based
and event-based programming. Theoretical Computer Science, 410(2):202 –
220, 2009. Distributed Computing Techniques.

[92] Herbert Lionel Adolphus Hart, Herbert Lionel Adolphus Hart, Joseph Raz,
and Leslie Green. The concept of law. oxford university press, 2012.

[93] Md Morshadul Hasan, József Popp, and Judit Oláh. Current landscape and
influence of big data on finance. Journal of Big Data, 7, 12 2020.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 166PDF page: 166PDF page: 166PDF page: 166

154 Bibliography

[94] Mustafa Hashmi and Guido Governatori. Norms modeling constructs of busi-
ness process compliance management frameworks: a conceptual evaluation.
Artificial Intelligence and Law, 26:251–305, 9 2018.

[95] Mustafa Hashmi, Guido Governatori, Ho Pun Lam, and Moe Thandar
Wynn. Are we done with business process compliance: state of the art and
challenges ahead. Knowledge and Information Systems, 57:79–133, 10 2018.

[96] Andreas Herzig, Emiliano Lorini, Laurent Perrussel, and Zhanhao Xiao. Bdi
logics for bdi architectures: Old problems, new perspectives. KI - Künstliche
Intelligenz, 31(1):73–83, Mar 2017.

[97] Carl Hewitt. Actor model of computation: Scalable robust information
systems, 2010.

[98] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, IJCAI’73, page 235–245, San
Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[99] Koen V. Hindriks. Programming Rational Agents in GOAL. In Multi-
agent programming: Languages, platforms and applications, chapter 4, pages
119–157. 2009.

[100] Wesley Newcomb Hohfeld. Fundamental legal conceptions as applied in
judicial reasoning. The Yale Law Journal, 26(8):710–770, 1917.

[101] Nam Huynh, Johan Barthelemy, and Pascal Perez. A heuristic combinatorial
optimisation approach to synthesising a population for agent-based modelling
purposes. Journal of Artificial Societies and Social Simulation, 19(4):11,
2016.

[102] A Jorge and Sheila A. McIlraith. Planning with preferences. AI Magazine,
29(4):25–36, 2008.

[103] Quinta Jurecic. Paul C. Ney Jr., General Counsel, U.S. Department of
Defense, Keynote Address at the Israel Defense Forces 3rd International
Conference on the Law of Armed Conflict. Lawfare, may 2019.

[104] C. Kaiser and Jean-François Pradat-Peyre. Chameneos, a concurrency
game for java, ada and others. In ACS/IEEE International Conference on
Computer Systems and Applications, pages 62–70. IEEE, 08 2003.

[105] Timotheus Kampik and Juan Carlos Nieves. JS-son - A lean, extensible
JavaScript agent programming library. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 12058 LNAI:215–234, 2020.

https://perspectives.ki/
https://preferences.ai/

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 167PDF page: 167PDF page: 167PDF page: 167

Bibliography 155

[106] Mohamed A. Khamis and Khaled Nagi. Designing multi-agent unit tests
using systematic test design patterns (extended version). Engineering Ap-
plications of Artificial Intelligence, 26(9):2128–2142, 2013.

[107] Mohammed Khouj, César López, Sarbjit Sarkaria, and José Marti. Disaster
management in real time simulation using machine learning. In 2011 24th
Canadian Conference on Electrical and Computer Engineering(CCECE),
pages 001507–001510, 2011.

[108] Vincent J. Koeman, Koen V. Hindriks, and Catholijn M. Jonker. Automating
failure detection in cognitive agent programs. Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS,
pages 1237–1246, 2016.

[109] Jonathan Kwik, Tomasz Zurek, and Tom van Engers. Design-
ing international humanitarian law into military autonomous devices.
https://ssrn.com/abstract=4109286, May 2022.

[110] Derek Leben. Normative principles for evaluating fairness in machine
learning. In Proceedings of the AAAI/ACM Conference on AI, Ethics,
and Society, AIES ’20, page 86–92, New York, NY, USA, 2020. Association
for Computing Machinery.

[111] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Ex-
plainable ai: A review of machine learning interpretability methods. Entropy,
23(1):18, 2020.

[112] Andrea Loreggia, Emiliano Lorini, and Giovanni Sartor. A ceteris paribus
deontic logic. In Francesco Calimeri, Simona Perri, and Ester Zumpano,
editors, Proceedings of the 35th Italian Conference on Computational Logic
- CILC 2020, Rende, Italy, October 13-15, 2020, volume 2710 of CEUR
Workshop Proceedings, pages 248–262. CEUR-WS.org, 2020.

[113] Emiliano Lorini. Logics for games, emotions and institutions. The IfCoLog
Journal of Logics and their Applications, 4(9):3075–3113, 2017.

[114] Michael Luck, Mark d’Inverno, et al. A normative framework for agent-based
systems. Computational & Mathematical Organization Theory, 12(2):227–
250, 2006.

[115] Marco Lützenberger, Sebastian Ahrndt, Nils Masuch, Axel Heßler, Benjamin
Hirsch, and Sahin Albayrak. The bdi driver in a service city. In The 10th
International Conference on Autonomous Agents and Multiagent Systems-
Volume 3, pages 1257–1258, 2011.

tel:001507%E2%80%93001510
https://ssrn.com/abstract
https://ceur-ws.org/

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 168PDF page: 168PDF page: 168PDF page: 168

156 Bibliography

[116] Juliano Maranhão, Edelcio G. de Souza, and Giovanni Sartor. A dynamic
model for balancing values. In Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Law, ICAIL ’21, page 89–98, New
York, NY, USA, 2021. Association for Computing Machinery.

[117] T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, 1976.

[118] D McDermott, M Ghallab, A Howe, C Knoblock, A Ram, M Veloso, D Weld,
and D Wilkins. PDDL - The Planning Domain Definition Language. The
AIPS-98 Planning Competition Committee, page 27, 1998.

[119] Felipe Meneguzzi and Lavindra De Silva. Planning in bdi agents: a survey of
the integration of planning algorithms and agent reasoning. The Knowledge
Engineering Review, 30(1):1–44, 2015.

[120] Felipe Meneguzzi and Michael Luck. Norm-based behaviour modification
in bdi agents. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS, volume 1, pages
177–184, 01 2009.

[121] Dejan Mitrovic, Mirjana Ivanovic, and Costin Badica. Jason agents in java
ee environments. In 2013 17th International Conference on System Theory,
Control and Computing (ICSTCC), pages 768–771, 10 2013.

[122] Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers. Integrating
CP-Nets in Reactive BDI Agents. In Matteo Baldoni, Mehdi Dastani, Beishui
Liao, Yuko Sakurai, and Rym Zalila Wenkstern, editors, PRIMA 2019:
Principles and Practice of Multi-Agent Systems, pages 305–320. Springer
International Publishing, 2019.

[123] Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers. Declarative
Preferences in Reactive BDI Agents. In Takahiro Uchiya, Quan Bai, and
Iván Marsá Maestre, editors, PRIMA 2020: Principles and Practice of
Multi-Agent Systems, pages 215–230, Cham, 2021. Springer International
Publishing.

[124] Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers. Preference-
based goal refinement in bdi agents. In Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’22,
page 917–925, Richland, SC, 2022. International Foundation for Autonomous
Agents and Multiagent Systems.

[125] Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers. Seamless
integration and testing for mas engineering. In Engineering Multi-Agent
Systems, pages 254–272, Cham, 2022. Springer International Publishing.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 169PDF page: 169PDF page: 169PDF page: 169

Bibliography 157

[126] Mostafa Mohajeri Parizi, Giovanni Sileno, Tom van Engers, and Sander
Klous. Run, agent, run! architecture and benchmarking of actor-based agents.
In Proceedings of the 10th ACM SIGPLAN International Workshop on
Programming Based on Actors, Agents, and Decentralized Control, AGERE
2020, page 11–20, New York, NY, USA, 2020. Association for Computing
Machinery.

[127] Mailyn Moreno, Juan Pavón, and Alejandro Rosete. Testing in agent oriented
methodologies. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
5518 LNCS(PART 2):138–145, 2009.

[128] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John
Wiley & Sons, Ltd, 2012.

[129] Cu D. Nguyen, Anna Perini, Carole Bernon, Juan Pavón, and John Thangara-
jah. Testing in multi-agent systems. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 6038 LNCS:180–190, 2011.

[130] Helen Nissenbaum. Privacy as contextual integrity. Wash. L. Rev., 79:119,
2004.

[131] Lin Padgham and Dhirendra Singh. Situational preferences for BDI plans.
Proceedings of the 2013 international conference . . . , pages 1013–1020, 2013.

[132] Lin Padgham and Michael Winikoff. Developing intelligent agent systems:
A practical guide, volume 13. John Wiley & Sons, 2004.

[133] Stipe Pandžić, Jan Broersen, and Henk Aarts. BOID*: Autonomous goal
deliberation through abduction. In Proceedings of the 21st International Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS ’22, page
1019–1027, Richland, SC, 2022. International Foundation for Autonomous
Agents and Multiagent Systems.

[134] Mostafa Mohajeri Parizi, L. Thomas van Binsbergen, Giovanni Sileno, and
Tom van Engers. A modular architecture for integrating normative advisors
in mas. In Multi-Agent Systems, pages 312–329, Cham, 2022. Springer
International Publishing.

[135] Gabriella Pigozzi, Alexis Tsoukiàs, and Paolo Viappiani. Preferences in
artificial intelligence. Annals of Mathematics and Artificial Intelligence,
77(3-4):361–401, 2016.

[136] John Pourdehnad, Kambiz Maani, and Habib Sedehi. System dynamics and
intelligent agent-based simulation: where is the synergy. In Proceedings of
the XX International Conference of the System Dynamics society, 2002.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 170PDF page: 170PDF page: 170PDF page: 170

158 Bibliography

[137] David Poutakidis, Michael Winikoff, Lin Padgham, and Zhiyong Zhang.
Debugging and Testing of Multi-Agent Systems using Design Artefacts, pages
215–258. Springer US, 2009.

[138] Felixie Rafalimanana, Jean Razafindramintsa, Josué Ratovondrahona, Maha-
tody Thomas, and Victor Manantsoa. Publish a jason agent bdi capacity as
web service rest and soap. In Proceedings of the 8th International Conference
on Sciences of Electronics, Technologies of Information and Telecommunica-
tions (SETIT’18), Vol.1, pages 163–171, 01 2020.

[139] Anand S Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In Walter de Velde and John W Perram, editors, Agents Breaking
Away, pages 42–55, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[140] Anand S Rao, Michael P Georgeff, and others. BDI agents: From theory to
practice. Icmas, 95:312–319, 1995.

[141] Sebastian Rodriguez, Nicolas Gaud, and Stéphane Galland. Sarl: A general-
purpose agent-oriented programming language. In 2014 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), volume 3, pages 103–110, 2014.

[142] Sebastian Sardina and Lin Padgham. A BDI agent programming language
with failure handling, declarative goals, and planning. Autonomous Agents
and Multi-Agent Systems, 23(1):18–70, 2011.

[143] H.J. Scholl. Agent-based and system dynamics modeling: a call for cross
study and joint research. In Proceedings of the 34th Annual Hawaii Interna-
tional Conference on System Sciences, pages 8 pp.–, 2001.

[144] John R. Searle. Speech acts: An Essay in the Philosophy of Language.
Cambridge University Press, 1969.

[145] Sara Shakeri, Valentina Maccatrozzo, Lourens Veen, Rena Bakhshi, Leon
Gommans, Cees De Laat, and Paola Grosso. Modeling and matching
digital data marketplace policies. In IEEE 15th International Conference
on eScience, eScience 2019, pages 570–577. Institute of Electrical and
Electronics Engineers Inc., 9 2019.

[146] Smadar Shilo, Hagai Rossman, and Eran Segal. Axes of a revolution:
challenges and promises of big data in healthcare. Nature Medicine, 26:29–
38, 1 2020.

[147] Yoav Shoham. Agent-oriented programming. Artificial intelligence, 60(1):51–
92, 1993.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 171PDF page: 171PDF page: 171PDF page: 171

Bibliography 159

[148] Giovanni Sileno. Aligning Law and Action. PhD thesis, University of
Amsterdam, 2016.

[149] Giovanni Sileno, Alexander Boer, and Tom van Engers. Revisiting Consti-
tutive Rules. In Proceedings of the 6th Workshop on Artificial Intelligence
and the Complexity of Legal Systems (AICOL 2015), 2015.

[150] Giovanni Sileno, L. Thomas van Binsbergen, Matteo Pascucci, and Tom van
Engers. DPCL: a language template for normative specifications. Workshop
on Programming Languages and the Law (ProLaLa 2022), co-located with
POPL 2022, 2020.

[151] Lavindra De Silva. BDI Agent Reasoning with Guidance from HTN Recipes.
AAMAS ’17 Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, pages 759–767, 2017.

[152] Dhirendra Singh, Sebastian Sardina, Lin Padgham, and Geoff James. Inte-
grating learning into a bdi agent for environments with changing dynamics.
In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence - Volume Volume Three, IJCAI’11, page 2525–2530.
AAAI Press, 2011.

[153] Dhirendra Singh, Sebastian Sardina, Lin Padgham, and Geoff James. Inte-
grating learning into a BDI agent for environments with changing dynamics.
IJCAI International Joint Conference on Artificial Intelligence, pages 2525–
2530, 2011.

[154] Agnieszka Szpak. Legality of Use and Challenges of New Technologies in
Warfare – the Use of Autonomous Weapons in Contemporary or Future
Wars. European Review, 28(1):118–131, feb 2020.

[155] Stanis�law Szufa, Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and
Nimrod Talmon. Drawing a map of elections in the space of statistical
cultures. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’20, page 1341–1349, Richland,
SC, 2020. International Foundation for Autonomous Agents and Multiagent
Systems.

[156] Mihnea Tufis and Jean-Gabriel Ganascia. Grafting norms onto the BDI
agent model. A Construction Manual for Robots’ Ethical Systems. Cognitive
Technologies, 2015.

[157] L. Thomas van Binsbergen, Milen G. Kebede, Joshua Baugh, Tom van
Engers, and Dannis G. van Vuurden. Dynamic generation of access con-
trol policies from social policies. Procedia Computer Science, 198:140–147,
2022. 12th International Conference on Emerging Ubiquitous Systems and

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 172PDF page: 172PDF page: 172PDF page: 172

160 Bibliography

Pervasive Networks / 11th International Conference on Current and Future
Trends of Information and Communication Technologies in Healthcare.

[158] L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom
van Engers. eFLINT: A domain-specific language for executable norm
specifications. GPCE 2020 - Proceedings of the 19th ACM SIGPLAN Inter-
national Conference on Generative Programming: Concepts and Experiences,
Co-located with SPLASH 2020, pages 124–136, 2020.

[159] Tom van Engers and Erwin Glassee. Facilitating the legislation process
using a shared conceptual model. IEEE Intelligent Systems, 16(1):50–58,
2001.

[160] Lourens E Veen, Sara Shakeri, and Paola Grosso. Mahiru: a feder-
ated, policy-driven data processing and exchange system. arXiv preprint
arXiv:2210.17155, 2022.

[161] Simeon Visser, John Thangarajah, and James Harland. Reasoning about
preferences in intelligent agent systems. IJCAI International Joint Confer-
ence on Artificial Intelligence, pages 426–431, 2011.

[162] Simeon Visser, John Thangarajah, James Harland, and Frank Dignum.
Preference-based reasoning in BDI agent systems. Autonomous Agents and
Multi-Agent Systems, 30(2):291–330, 2016.

[163] Wietske Visser, Reyhan Aydoǧan, Koen V. Hindriks, and Catholijn M.
Jonker. A framework for qualitative multi-criteria preferences. ICAART 2012
- Proceedings of the 4th International Conference on Agents and Artificial
Intelligence, 1:243–248, 2012.

[164] Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker. Goal-based
qualitative preference systems. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 7784 LNAI:153–169, 2013.

[165] Wolff Heintschel von Heinegg. Considerations of Necessity under Article
57(2)(a)(ii), (c), and (3) and Proportionality under Article 51(5)(b) and
Article 57(2)(b) of Additional Protocol I. In Claus Kreß and Robert Lawless,
editors, Necessity and Proportionality in International Peace and Security
Law, pages 325–342. Oxford University Press, Oxford, nov 2020.

[166] Nic Wilson. Extending CP-Nets with Stronger Conditional Preference State-
ments. In 19th National Conference on Artificial Intelligence (AAAI’04),
pages 735–741, 2004.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 173PDF page: 173PDF page: 173PDF page: 173

Bibliography 161

[167] Michael Winikoff. BDI agent testability revisited. Autonomous Agents and
Multi-Agent Systems, 31(5):1094–1132, 2017.

[168] Michael Winikoff and Stephen Cranefield. On the testability of BDI agent
systems. IJCAI International Joint Conference on Artificial Intelligence,
2015-Janua:4217–4221, 2015.

[169] Michael Winikoff, Louise Dennis, and Michael Fisher. Slicing Agent Programs
for More Efficient Verification, volume 11375 LNAI. Springer International
Publishing, 2019.

[170] Michael Winikoff, Lin Padgham, James Harland, and John Thangarajah.
Declarative & procedural goals in intelligent agent systems. In 8th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning,
KR’02, page 470–481, 2002.

[171] Lu Zhang, Reginald Cushing, Leon Gommans, Cees De Laat, and Paola
Grosso. Modeling of Collaboration Archetypes in Digital Market Places.
IEEE Access, 7:102689–102700, 2019.

[172] Zhiyong Zhang, John Thangarajah, and Lin Padgham. Automated unit
testing for agent systems. In ENASE 2007 - Proceedings of the 2nd In-
ternational Conference on Evaluation of Novel Approaches to Software
Engineering, pages 10–18, 2007.

[173] Xin Zhou, Adam Belloum, Michael H Lees, Tom van Engers, and Cees
de Laat. Costly incentives design from an institutional perspective: coop-
eration, sustainability and affluence. Proceedings of the Royal Society of
London Series A, 478(2265):20220393, 2022.

[174] Xin Zhou, Reginald Cushing, Ralph Koning, Adam Belloum, Paola Grosso,
Sander Klous, Tom van Engers, and Cees de Laat. Policy enforcement for
secure and trustworthy data sharing in multi-domain infrastructures. In 2020
IEEE 14th International Conference on Big Data Science and Engineering
(BigDataSE), pages 104–113. IEEE, 2020.

[175] T Zurek and M Araszkiewicz. Modeling teleological interpretation. In Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence
and Law, pages 160–168. ACM, 2013.

[176] Tomasz Zurek. Modeling conflicts between legal rules. In M. Ganzha,
L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated
Conference on Computer Science and Information Systems, volume 8 of
Annals of Computer Science and Information Systems, pages 393–402. IEEE,
2016.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 174PDF page: 174PDF page: 174PDF page: 174

162 Bibliography

[177] Tomasz Zurek. Goals, values, and reasoning. Expert Systems with Applica-
tions, 71:442–456, 2017.

[178] Tomasz Zurek, Mostafa Mohajeri Parizi, Jonathan Kwik, and Tom van
Engers. Can a military autonomous device follow international humanitarian
law? In Legal Knowledge and Information Systems, pages 273–278. IOS
Press, 2022.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 175PDF page: 175PDF page: 175PDF page: 175

Samenvatting

Met de toenemende digitalisering van de samenleving wordt een steeds groter deel
van ons dagelijks leven bëınvloed door softwaresystemen die beslissingen onders-
teunen of automatiseren (over visumaanvragen, sollicitaties, kredietplaatsingen,
hypotheken, verzekeringen, . . .), door middel van op regels gebaseerde, datages-
tuurde of hybride methoden. Deze transformatie vormt de motivatie voor de
in dit proefschrift beschreven technische benaderingen om het ontwerp, de on-
twikkeling, de implementatie en het onderhoud van digitale systemen te regelen
in overeenstemming met de regelgeving. In dit proefschrift concentreren we ons
op computationele agenten en hun interactie met normen, om een reeks ontwerp-
en modelleringstools, computationele methodologieën en inzichten met betrekking
tot het beheer van sociaal-technische systemen te ontwerpen en te ontwikkelen.
Agentmodellen kunnen worden gebruikt om de verschillende belanghebbenden
vast te leggen die deelnemen aan het sociale systeem, elk met hun eigen soort
overtuigingen, intenties en voorkeuren. Normmodellen stellen verwachtingen en
dus criteria voor de evaluatie van gedrag; als zodanig vormen ze een fundamentele
basis voor sociale coördinatiemechanismen en voor oordelen over naleving.

Dit proefschrift richt zich op agentmodellering en de bijbehorende modeluitvo-
ering als een belangrijke stap in systeemontwerp en beleidsvormingsactiviteiten
met betrekking tot digitale infrastructuren. Het introduceert een agentgebaseerd
programmeerraamwerk (genaamd ASC2) op basis van de believe-desire-intention
(BDI), naast een schaalbaar multi-agentsysteem als runtime-omgeving. Het uitvo-
eringsmodel van de agents is gebaseerd op het actormodel en het framework
wordt geanalyseerd en vergeleken met andere state-of-the-art agent-georiënteerde
programmeerframeworks. Het proefschrift gaat verder in op de waarde van het
gebruik van reguliere softwareontwikkelingstools in agent-based programmeren en
illustreert dit door ASC2 te combineren met andere tools zoals testing, debugging
en zelfs DevOps-tools.

Op taalniveau worden, om de transparantie van de modellen en de besluitvorm-
ing van de agent te vergroten, contextafhankelijke voorkeuren, zowel procedureel

163

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 176PDF page: 176PDF page: 176PDF page: 176

164 Samenvatting

als declaratief, aan het raamwerk toegevoegd. Verder wordt een methode gepresen-
teerd om voorkeuren te gebruiken voor het verfijnen van abstracte doelen, waarbij
de how-to-do kennis van de agenten wordt uitgebreid met what-to-do kennis. Ten
slotte wordt een modulaire, op BDI gebaseerde architectuur gëıntroduceerd voor
het integreren van normen in MAS via normatieve adviseurs. Deze architectuur
stelt de agenten in staat om normen over te nemen, te laten vallen en ermee te
redeneren door ze te integreren in hun redeneringscyclus zonder de autonomie
van de agent te beperken. De normatieve adviseursarchitectuur houdt rekening
met regulerende en constitutieve normencategorieën, persoonlijke en groepsnor-
men, verschillende operationaliseringen van normen op basis van gecentraliseerde,
gelokaliseerde en ad-hocarchitecturen, en ook met de aanwezigheid van meerdere
bronnen van normen, waaronder complementaire en/of tegenstrijdige bronnen.

Om de mogelijkheden van de voorgestelde benaderingen te demonstreren,
worden twee verschillende voorbeeldcasus gepresenteerd. De eerste casestudy richt
zich op het gebruik van ad-hoc-normen als coördinatiemiddel in een normatief
multi-agentsysteem, en de tweede casestudy richt zich op het omschrijven van
acties van autonome agenten met gecodeerde wetten.

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 177PDF page: 177PDF page: 177PDF page: 177

Abstract

With the increasing digitization of our society, more of our daily life is being
affected by software systems supporting us taking (partially) automating deci-
sions (about visa applications, job applications, credit placements, mortgages,
insurances, . . .), by means of rule-based, data-driven, or hybrid methods. This
transformation motivates the introduction of engineering approaches to govern the
design, development, deployment, and maintenance of digital systems in alignment
with regulations. This dissertation tackles this challenge by focusing on computa-
tional agents, and their interaction with norms, to conceive and develop a set of
design and modelling tools, computational methodologies, and insights concerning
the governance of socio-technical systems. Agent models can be utilized to capture
the different stakeholders participating in the social system, each with their own
type of beliefs, intentions, preferences. Norm models sets expectations and thus
criteria for the evaluation of behaviors; as such, they form a fundamental basis for
social coordination mechanisms and for judgments about compliance.

This dissertation focuses on agent modelling and the associated model-execution
as a principal step in system design and policy-making activities on digital infras-
tructures. It introduces an agent-based programming framework (named ASC2)
based on the belief-desire-intention (BDI), alongside a scalable multi-agent system
as runtime environment. The execution model of the agents is based on the actor
model and the framework is analysed and benchmarked against other state-of-the-
art agent-oriented programming frameworks. The dissertation further elaborates
on the value of utilizing mainstream software development tools in agent-based
programming and illustrates this by bridging ASC2 with multiple tools such as
testing, debugging and even DevOps tools.

At the level of language, to increase the transparency of the models and agent’s
decision-making, context-dependent preferences, both procedural and declarative
are added to the framework. Furthermore, a method is presented to utilize prefer-
ences for refinement of abstract goals, extending the how-to-do knowledge of the
agents with what-to-do knowledge. Finally, a modular BDI-based architecture is

165

636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa636374-L-sub01-bw-Mostafa
Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024Processed on: 13-3-2024 PDF page: 178PDF page: 178PDF page: 178PDF page: 178

166 Abstract

introduced for integrating norms into MAS via normative advisors. This architec-
ture allows for the agents to adopt, drop and reason with norms by integrating
them in their reasoning cycle whilst not constraining the agent’s autonomy. The
normative advisor architecture considers regulative and constitutive categories of
norms, personal and group norms, different operationalizations of norms based
on centralized, localized, and ad-hoc architectures, and also presence of multiple
sources of norms, including complementing and/or contradicting ones.

To fully demonstrate the capabilities of the proposed approaches, two different
example cases are presented. The first case study focuses on the utilization of
ad-hoc norms as means of coordination in a normative multi-agent system, and
the second case study focuses on circumscribing actions of autonomous agents
with encoded laws.

An Agent-based Approach to
the Governance of Complex
Cyber-Infrastructures

{

}

Mostafa Mohajeri PariziAn
 A
ge
nt
-b
as
ed
 A

pp
ro

ac
h

to
 t

he
 G
ov
er

na
nc

e
of

 C
om

pl
ex

 C
yb

er
-I

nf
ra

st
ru

ct
ur

es
M.
 M
oh
aj
er
i
Pa
ri
zi

ISBN: 978-94-6473-443-0

	Lege pagina
	Lege pagina

